
Type inference in context

Adam Gundry Conor McBride
University of Strathclyde, Glasgow

{adam.gundry,conor.mcbride} at cis.strath.ac.uk

James McKinna
Radboud University, Nijmegen
james.mckinna at cs.ru.nl

Abstract

We consider the problems of first-order unification and type infer-
ence from a very general perspective on problem-solving, namely
that of information increase in the problem context. This leads to
a powerful technique for implementing type inference algorithms.
We describe a unification algorithm and illustrate the technique
by applying it to the familiar Hindley-Milner type system, but it
can be applied to more advanced type systems. The algorithms
depend on a well-founded invariant on contexts in which type
variable bindings and type-schemes for terms may depend only on
bindings appearing earlier in the context. We ensure that unification
produces a most general unifier, and that type inference produces
principal types, by advancing definitions earlier in the context only
when absolutely necessary.

1. Introduction

Algorithm W is a well-known type inference algorithm, based on
Robinson’s Unification Algorithm [1965], for the Hindley-Milner
type system [Milner 1978], verified by Damas and Milner [1982].

Successive presentations and formalisations of Algorithm W have
treated the underlying unification algorithm as a ‘black box’, but by
considering both simultaneously we are able to give a more elegant
type inference algorithm. In particular, the generalisation step (for
inferring the type of a let-expression) becomes straightforward.

This paper is literate Haskell, with full source code available at
http://personal.cis.strath.ac.uk/~adam/type-inference/.

1.1 Motivating Context

Why revisit Algorithm W? This is a first step towards a longer term
objective: explaining the elaboration of high-level dependently
typed programs into fully explicit calculi. Elaboration involves
inferring implicit arguments by solving constraints, just as W
specialises polymorphic type schemes, but with fewer algorithmic
guarantees. Dependently typed programs are often constructed
incrementally, with pieces arriving in an unpredictable order. Unifi-
cation problems involve computations as well as constructors, and
may evolve towards tractability even if not apparently solvable at
first. Type inference without annotation is out of the question, but

[Copyright notice will appear here once ’preprint’ option is removed.]

we may still exploit most general solutions to constraints when they
exist. Milner’s insights still serve us well, if not completely.

The existing literature on ‘implicit syntax’ [Norell 2007; Pollack
1990] neither fully nor clearly accounts for the behaviour of the
systems in use today, nor are any of these systems free from
murky corners. We feel the need to step back and gain perspective.
Pragmatically, we need to account for stepwise progress in problem
solving from states of partial knowledge.

What are such states of partial knowledge? In this paper, we model
them by contexts occurring in typing judgments, describing the
known properties of all variables in scope. We present algorithms
via systems of inference rules defining relationships between asser-
tions of the form Γ � ∆ ` S. Here Γ is the input context (before
applying the rule), S the statement to be established, and ∆ the
output context (in which S holds). We revisit Algorithm W as a
sanity check that our perspective is helpful, as a familiar example of
problem solving presented anew, and because our context discipline
yields a clearer account of generalisation in let-binding.

This idea of assertions producing a resulting context goes back
at least to Pollack [1990]. An interesting point of comparison
is with the work of Nipkow and co-workers [Naraschewski and
Nipkow 1999; Nipkow and Prehofer 1995], but substitutions and
new contexts are there kept separate. We define an ordering on
contexts based on their information content, and show that ∆ is
minimal with respect to this ordering. If one thinks of a context
as a set of atomic facts, then ∆ is the least upper bound of Γ
together with the facts required for S to hold. In each case, at
most one rule matches the input context and condition, and we
specify a termination order so the rules define algorithms. These
are straightforward to implement by translating the rule systems
into appropriately monadic code. We illustrate this with our Haskell
implementation.

Contexts here are not simply sets of assumptions, but lists con-
taining information about type and term variables. The unification
problem thus becomes finding a ‘more informative’ context in
which two expressions are equivalent up to definition. Order
of entries in a context is important. They are subject to well-
foundedness conditions: any definition or declaration must be in
terms of variables earlier in the context, as in dependent type
theories. We obtain most general unifiers and principal types just by
keeping entries as far to the right as possible, moving them left only
when necessary to satisfy a constraint. Imposing order restrictions
on context entries is similar to the ordered hypotheses of deduction
systems for non-commutative logic [Polakow and Pfenning 1999].

In contrast to other presentations of unification and Hindley-Milner
type inference, our algorithm uses explicit definitions to avoid
the need for a substitution operation. (We do use substitution in
reasoning about the system.) Many implementations of (variations

1 2010/4/23

http://personal.cis.strath.ac.uk/~adam/type-inference/

on) the Robinson unification algorithm are incorrect because they
do not handle substitutions correctly [Norvig 1991].

This paper has been brewing for a long time. Its origins lie in
a long lost constraint engine which McBride cannibalised from
components of an implementation of Miller’s ‘mixed prefix’ uni-
fication [Miller 1992], mutating the quantifier prefix into a context.
McBride’s thesis [McBride 1999] gives an early account of typing
contexts representing the state of an interactive construction sys-
tem, with ‘holes’ in programs and proofs as specially designated
variables. Contexts come equipped with an information order:
increase of information preserves typing and equality judgments;
proof tactics are admissible context validity rules which increase
information; unification is specified as a tactic which increases
information to make an equation hold, but its implementation is
not discussed. This view of construction underpinned the imple-
mentation of Epigram [McBride and McKinna 2004] and informed
Norell’s implementation of Agda [Norell 2007]. It is high time we
began to explain how it works and perhaps to understand it.

2. Types and type variables

2.1 Syntax

The syntax of Hindley-Milner types is

τ ::= α | τ . τ
where α ranges over some set of type variables VTY. For simplicity,
we only consider one type constructor. In the sequel, α and β are
type variables and τ and υ are types. Let Type be the set of types.

We write FTV (τ) for the free type variables of τ , defined as
follows. This will later be extended to other syntactic objects.

FTV (α) = {α}
FTV (τ . υ) = FTV (τ) ∪ FTV (υ)

The foldable functor Ty defines types in our object language
parameterised by the type of variable names, which will be useful
later. Thanks to a language extension in GHC 6.12 [GHC Team
2009] we can simply derive the required typeclass instances. For
simplicity, we use integers as names in the implementation.

data Ty a = V a | Ty a . Ty a
deriving (Functor ,Foldable)

type TyName = Integer
type Type = Ty TyName

We implement FTV via a typeclass with membership function
(∈). We get most of the required instances for free using Foldable .

class FTV a where
(∈) :: TyName → a → Bool

instance FTV TyName where
(∈) = (≡)

instance (Foldable t ,FTV a)⇒ FTV (t a) where
α ∈ t = any (α ∈) t

2.2 Introducing contexts

Types contain variables, but we need some way of interpreting what
the variables mean. Our ideology is that such information belongs
in the context. We give an abstract description of contexts, which
may contain type variables and other information.

Let K be a set of sorts, and for each K ∈ K let VK be a set
of variables and DK a set of declaration properties. Our running
example will be the sort TY, where VTY is some set of type
variables and DTY initially contains only the ‘unbound variable’
property :=?. Properties of variables play the same atomic role in
derivations that variables themselves play in terms.

A context is a list of declarations vD, with v ∈ VK and D ∈ DK .
The empty context is written ε. We let Γ,∆,Θ range over contexts.

We will gradually construct a set S of statements, which can
be judged in a context: these are the ‘sorts’ of our syntax of
derivations. We write the normal judgment Γ ` S to mean that the
declarations in Γ support the statement S ∈ S. We write the neutral
judgment Γ S to mean that S follows directly from applying a
fact in Γ. Neutral judgments capture exactly the legitimate appeals
to assumptions in the context, just the way ‘neutral terms’ in λ-
calculus are applied variables. We embed neutral into normal:

NEUTRAL Γ S
Γ ` S

It is not enough for contexts to be lists of declarations: they must
be well-founded, that is, each declaration should make sense in
its context. A context is valid if it declares each variable at most
once, and each declaration property is meaningful in the preceding
context. We maintain a map okK : DK → S for every K ∈ K.
Let VK(Γ) be the set of K-variables in Γ. We define the context
validity statement valid as shown in Figure 1.

Γ ` valid

ε ` valid
Γ ` valid Γ ` okKD

Γ, vD ` valid
v ∈ VK \ VK(Γ)

Figure 1. Rules for context validity

From now on, we consider only valid contexts. All future defini-
tions implicitly assume the context is valid, and it is straightforward
to verify that our algorithms preserve context validity.

In the example of type declarations, we let okTY(:=?) = valid.
That is, declaring our ignorance is always reasonable.

2.3 Making types meaningful

Now we can ask whether a type is meaningful with respect to a
context. This requires us to determine whether a type variable is in
scope. In general, each context entry forces some statement to hold.

We suppose that there is a map J·KK : VK × DK → S for each
K ∈ K, from declarations to statements. (We typically omit the
subscript when the sort is irrelevant or can be inferred.) The idea
is that JvDK is the statement that holds by virtue of the declaration
vD in the context. The basic rule of our inference system is

LOOKUP Γ ` valid vD ∈ Γ
Γ JvDK .

As promised, uses of LOOKUP act as ‘variables’ in derivations. Our
J·KK associates to an ‘expression atom’ its ‘derivation atom’. This
is the only rule which interrogates the context, hence we propose
dropping the shared context from the presentation of all other rules.

2 2010/4/23

We define the statement τ type by taking Jα :=?K = α type
together with the structural rule

τ type υ type
τ . υ type

.

Note that we omit the context from rules if it is constant throughout.
We observe the sanity condition Γ ` τ type⇒ Γ ` valid.

2.4 Conjunctions

We shall sometimes need to package multiple facts about a single
variable, so we introduce the composite statement S ∧ S′ for
statements S and S′, with normal introduction rule (pairing) and
neutral elimination rules (projections):

S S′

S ∧ S′
 S ∧ S′

 S
 S ∧ S′

 S′

This is but one instance of a general pattern: we add normal in-
troduction forms for composite statements, but supply eliminators
only for composite hypotheses, in effect forcing derivations to be
cut-free. This facilitates reasoning by induction on derivations. We
shall ensure that the corresponding elimination rules for normal
judgments are in any case admissible.

2.5 Type variable declarations

At the moment, variables are rather useless, because they can
do nothing more than exist. During unification we will solve
constraints to discover the values of variables, so we could then
substitute them out. However, finding a value for a variable does not
render it meaningless, in fact the reverse is true. We will therefore
extend declarations instead, allowing variables to retain their values
and hence their meaning. We extend DTY with bindings := τ for
every type τ , and let okTY(:=τ) = τ type.

If Ξ is a list of type variable declarations, we define its set of free
type variables FTV (Ξ) by

FTV (Ξ) =
[
{FTV (τ) | α :=τ ∈ Ξ}.

If X0, . . . , Xn are types or lists of type variable declarations then

FTV (X0, . . . , Xn) = FTV (X0) ∪ . . . ∪ FTV (Xn).

2.6 Type equations

Previously we could only consider the syntactic equality of types,
but type variable declarations now induce a more interesting
equational theory. If τ and υ are types, we define the equivalence
statement τ ≡ υ by making declarations yield equations:

Jα :=τKTY = α type ∧ α ≡ τ
and taking structural and equivalence closure by the rules in
Figure 2. We observe the sanity condition

Γ ` τ ≡ υ ⇒ Γ ` τ type ∧ υ type.

2.7 Implementing types and contexts

A type variable declaration is given by a TyEntry , where a variable
is either bound to a type (written !τ) or left unbound (written ?).

data TyDecl = !Type | ?
data TyEntry = TyName := TyDecl

Thanks to the relevant Foldable instances, all we need to do is
define FTV for entries.

Γ ` τ ≡ υ

τ type
τ ≡ τ

υ ≡ τ
τ ≡ υ

τ0 ≡ υ0 τ1 ≡ υ1

τ0 . τ1 ≡ υ0 . υ1

τ0 ≡ τ1 τ1 ≡ τ2
τ0 ≡ τ2

Figure 2. Rules for type equivalence

instance FTV TyEntry where
α ∈ (:=!τ) = α ∈ τ
α ∈ (:=?) = False

A context is a (backwards) list of entries. At the moment we
only have one kind of entry, but later we will add others, so this
definition is incomplete. The context validity conditions will be
maintained by the algorithm but are not enforced by the type
system; this is possible in a language such as Agda. A context suffix
is a (forwards) list containing only type variable declarations.

data Entry = TY TyEntry | . . .

type Context = Bwd Entry
type Suffix = Fwd TyEntry

The types Bwd and Fwd are backwards (snoc) and forwards (cons)
lists, respectively. We overload ε for the empty list in both cases,
and write :< and :> for the backwards and forwards list data
constructors. Lists are monoids where ⊕ is the append operator,
and the ‘fish’ operator (<><) :: Context → Suffix → Context
appends a suffix to a context.

We work in the Contextual monad (computations that can fail and
mutate the context), defined as follows:

type Contextual = StateT (TyName,Context) Maybe

The TyName component is the next fresh type variable name to
use; it is an implementation detail not mentioned in the typing rules.
The fresh function generates a fresh variable name and appends a
declaration to the context. Our choice of TyName means that it is
easy to choose a name fresh with respect to a Context .

fresh :: TyDecl → Contextual TyName
fresh d = do (β,Γ)← get

put (freshen β Γ,Γ :< TY (β := d))
return β

where freshen α Γ = succ α

The getContext , putContext and modifyContext functions re-
spectively retrieve, replace and update the stored context. They
correspond to get , put and modify in the State monad, but ignore
the first component of the state.

getContext :: Contextual Context
getContext = gets snd

putContext :: Context → Contextual ()
putContext Γ = do β ← gets fst

put (β,Γ)

modifyContext :: (Context → Context)→ Contextual ()
modifyContext f = getContext >>= putContext ◦ f

3 2010/4/23

3. Information and stable statements

3.1 Information order

Intuitively, defining a variable cannot make equations cease to hold.
More generally, if we rely on the context to tell us what we may
deduce about variables, then making contexts more informative
must preserve deductions.

Let Γ and ∆ be contexts. A substitution from Γ to ∆ is a map
from VTY(Γ) to {τ | ∆ ` τ type}. Substitutions apply to types
and statements in the obvious way. Composition of substitutions is
given by (θ · δ)(α) = θ(δα). We write [τ/α] for the substitution
that maps α to τ and other variables to themselves.

We write δ : Γ � ∆ and say ∆ is more informative than Γ if δ is a
substitution from Γ to ∆ such that, for every vD ∈ Γ, we have that
∆ ` δJvDK.
We write δ ≡ θ : Γ � ∆ if δ : Γ � ∆, θ : Γ � ∆ and for all
α ∈ VTY(Γ), ∆ ` δα ≡ θα. We will sometimes just write δ ≡ θ
if the contexts involved are obvious. It is straightforward to verify
that ≡ is an equivalence relation for fixed contexts Γ and ∆, and
that if δ ≡ θ then ∆ ` δτ ≡ θτ for any Γ-type τ .

We may omit δ and write Γ � ∆ if we are only interested in the
existence of a suitable substitution. This relation between contexts
captures the notion of information increase: ∆ supports all the
statements corresponding to declarations in Γ.

This definition of information increase is not quite complete,
because it does not place any constraints on the order of context en-
tries, other than the dependency order of variables in declarations.
We will later see how to extend � to capture the order of entries at
an appropriate level of precision.

3.2 Stability

We say a statement S is stable if it is preserved under information
increase, that is, if

Γ ` S and δ : Γ � ∆ ⇒ ∆ ` δS.

This says that we can extend a simultaneous substitution on syntax
to a simultaneous substitution on derivations.

Since we are only interested in valid contexts, the statement valid
always holds, and is invariant under substitution, so is clearly
stable.

We have a standard strategy for proving stability of most state-
ments, which is effective by construction. In each case we proceed
by induction on the structure of derivations. Where the LOOKUP
rule is applied, stability holds by the definition of information
increase. Otherwise, for rules that do not refer to the context,
we can verify that non-recursive hypotheses are stable and that
recursive hypotheses occur in strictly positive positions, so they
are stable by induction. Applying this strategy shows that the
statements τ type and τ ≡ υ are stable.

Lemma 1. If JvDK is stable for every declaration vD, then the �
relation is a preorder, with reflexivity demonstrated by the inclusion
substitution ι : Γ � Γ : v 7→ v, and transitivity by composition:

δ : Γ � ∆ and θ : ∆ � Θ ⇒ θ · δ : Γ � Θ.

Proof. Reflexivity follows immediately from the LOOKUP rule. For
transitivity, suppose vD ∈ Γ, then ∆ ` δJvDK since δ : Γ � ∆.
Now by stability applied to δJvDK using θ, we have Θ ` θδJvDK
as required.

Lemma 2. If δ0 ≡ δ1 : Γ � ∆ and θ0 ≡ θ1 : ∆ � Θ then
θ0 · δ0 ≡ θ1 · δ1 : Γ � Θ.

Proof. Fix α ∈ VTY(Γ). By definition of ≡, ∆ ` δ0α ≡ δ1α, so
by stability, Θ ` θ0δ0α ≡ θ0δ1α. Moreover Θ ` θ0δ1α ≡ θ1δ1α,
and hence Θ ` θ0δ0α ≡ θ1δ1α by transitivity.

3.3 Composite statements

If S is a statement and vD is a declaration, then we define the
composite statement (vD � S) with the introduction rule

Γ ` okKD Γ, vD ` S
Γ ` (vD � S)

v ∈ VK \ VK(Γ).

and neutral elimination rule

Γ (αD � S) Γ ` [τ/α]JαDK
Γ [τ/α]S

D ∈ DTY

Lemma 3 (Composition preserves stability). If S and S′ are stable
then S ∧ S′ is stable. If vD is a declaration and both okKD and
S are stable, then (vD � S) is stable.

Proof. Suppose δ : Γ � ∆, the statements S and S′ are stable and
Γ ` (S ∧ S′). If the proof is by LOOKUP then ∆ ` δ(S ∧ S′) by
definition of information increase. Otherwise Γ ` S and Γ ` S′,
so by stability, ∆ ` δS and ∆ ` δS′, so ∆ ` δ(S ∧ S′).

Suppose δ : Γ � ∆, the statement S is stable and Γ ` (vD�S). If
the proof is by LOOKUP then ∆ ` δS by definition of information
increase. Otherwise, Γ ` okKD and Γ, vD ` S, so by stability,
∆ ` δ okKD. Now δ : Γ, vD � ∆, v(δD) so by stability of
S we have ∆, v(δD) ` δS. Hence ∆ ` (v(δD) � δS) and so
∆ ` δ(vD � S).

Thanks to Lemma 3 and the foregoing, every statement we have in-
troduced so far is stable. We will ensure stability for all statements
in S, so we can exploit it without qualification in the sequel.

4. Problems

4.1 What is a problem?

A problem represents a statement we wish to make hold by
increasing information in the context. More generally, it is a
statement with distinguished output positions for which we wish
to find a witness in a more informative context. Unification is an
example of the first kind of problem and type inference the second.

We are interested in creating algorithms to solve problems, prefer-
ably in as general a way as possible (that is, by making the smallest
information increase necessary to find a solution). This corresponds
to finding a most general unifier, in the case of unification, or a
principal type in the case of type inference.

Distinguishing output positions with angle brackets 〈·〉, formally, a
problem P consists of

• sets InP and OutP of input and output parameters,
• a precondition map PreP (·) : InP → S,
• a postcondition map P (·)〈·〉 : InP → OutP → S and
• a relation map RP 〈·〉〈·〉 : OutP → OutP → S,

4 2010/4/23

such that InP and OutP are closed under substitution and the
maps respect substitution, for example, PreP (θa) = θPreP (a).
Moreover, for any Γ, a ∈ InP and r, s, t ∈ OutP such that

Γ ` PreP (a) ∧ P (a)〈r〉 ∧ P (a)〈s〉 ∧ P (a)〈t〉,

we must have Γ ` RP 〈r〉〈r〉 and

Γ ` RP 〈r〉〈s〉 ∧ RP 〈s〉〈t〉 ⇒ Γ ` RP 〈r〉〈t〉.

The unification problem U is given by

InU = Type × Type

OutU = {1}
PreU (τ, υ) = τ type ∧ υ type

U(τ, υ)〈_〉 = τ ≡ υ
RU 〈_〉〈_〉 = valid

A P -instance for a context Γ is a ∈ InP such that Γ ` PreP (a).
The problem instance a has solution (r, δ,∆) if r ∈ OutP and
δ : Γ � ∆ such that ∆ ` P (δa)〈r〉. (Observe that ∆ ` PreP (δa)
by stability.)

The solution (r, δ,∆) is minimal if for any solution (s, θ,Θ) there
exists ζ : ∆ � Θ such that θ ≡ ζ · δ and Θ ` RP 〈ζr〉〈s〉.

We write δ : Γ �̂∆ ` P (a)〈r〉 to mean that (r, δ,∆) is a minimal
solution of the P -instance r.

4.2 The Optimist’s Lemma

If P and Q are problems, then P ∧Q is a problem with

InP∧Q = InP × InQ

OutP∧Q = OutP ×OutQ

PreP∧Q(a, b) = PreP (a) ∧ PreQ(b)

(P ∧Q)(a, b)〈r, s〉 = P (a)〈r〉 ∧Q(b)〈s〉
RP∧Q〈r, s〉〈t, u〉 = RP 〈r〉〈t〉 ∧ RQ〈s〉〈u〉

The point of all this machinery is to be able to state and prove the
following lemma, stating that the minimal solution to a conjunction
of problems can be found by finding the minimal solution of the
first problem, then (minimally) extending it to solve the second.

Lemma 4 (The Optimist’s Lemma). The following inference rule
is admissible:

δ : Γ �̂∆ ` P (a)〈r〉 θ : ∆ �̂ Θ ` Q(b)〈s〉
θ · δ : Γ �̂ Θ ` P (a)〈θr〉 ∧Q(b)〈s〉

.

Sketch. The solutions of P (a) arise exactly by extending δ, so if
we seek also to solve Q(b), it is necessary and sufficient to search
amongst the extensions of δ. For details, see appendix.

This sequential approach to problem solving is not the only de-
composition justified by stability. The account of unification given
by McAdam [1998] amounts to a concurrent, transactional decom-
position of problems. The same context is extended via multiple
different substitutions, then these are unified to produce a single
substitution.

5. Deriving a unification algorithm

5.1 Transforming the rule system for equivalence

We wish to transform these rules into a unification algorithm.
Starting with the rules in Figure 2, consider what happens if we
remove each equivalence closure rule in turn and attempt to prove
its admissibility. This will fail, but the proof obligations left over
give us a more specific but equivalent system of algorithmic-
looking rules for equivalence.

First, the reflexivity rule for types can be derived from the reflexiv-
ity rule for variables given by

α type
α ≡ α

by applying the structural rule until variables occur.

Next, transitivity can be derived from

α ≡ τ τ ≡ υ
α ≡ υ α 6= τ, α 6= υ

as follows. Suppose χ ≡ τ and τ ≡ υ and seek to prove χ ≡ υ.

• If χ = α is a variable distinct from τ and υ then we can use the
restricted transitivity rule.

• If χ = α = υ then we can use reflexivity.
• If χ = α = τ then the result holds by hypothesis.
• If χ is not a variable but υ is then we can apply symmetry and

one of the previous cases.
• If χ and υ are both not variables then we can apply the structural

rule.

Finally, symmetry becomes admissible (but not derivable) if re-
placed by

α ≡ τ
τ ≡ α.

Note that the restricted symmetry rule covers the case we needed
for deriving transitivity. Suppose υ ≡ τ and seek to prove τ ≡ υ.

• If υ = α is a variable then the rule applies.
• If υ is not a variable but τ = β is, then the proof of υ ≡ β

must be by restricted symmetry, in which case its hypothesis
says that β ≡ υ.

• If τ and υ are both not variables then we can apply the structural
rule.

5.2 Constructing a unification algorithm

Now we can see how to construct the algorithm. The structural
rule says that whenever we have rigid . symbols on each side, we
decompose the problem into two subproblems, and thanks to the
Optimist’s Lemma we can solve these sequentially. Otherwise, we
either have variables on both sides, or a variable on one side and a
type on the other. In each case, we look at the head of the context
to see what information it gives us, and use the transformed rules
to see how to proceed. When solving a variable with a type, we
need to accumulate the type’s dependencies as we encounter them,
performing the occur check to ensure a solution exists.

It is possible that a context entry may have no bearing on the
unification problem being solved, and hence can be ignored. We
define the orthogonality relation vD ⊥ X (the set of type variables

5 2010/4/23

X does not depend on the declaration vD) thus:

αD ⊥ X if α ∈ VTY \X
vD ⊥ X if v ∈ VK , D ∈ DK for K 6= TY

The rules in Figure 3 define our unification algorithm. The assertion
Γ � ∆ ` τ ≡ υ means that given inputs Γ, τ and υ, where
Γ ` τ type∧υ type, unification of τ with υ succeeds, producing
output context ∆.

The assertion Γ | Ξ � ∆ ` α ≡ τ means that given inputs Γ, Ξ, α
and τ , solving α with τ succeeds and produces output context ∆,
subject to the conditions

• α ∈ VTY(Γ),
• Γ,Ξ ` τ type,
• τ is not a variable,
• Ξ contains only type variable declarations and
• β ∈ VTY(Ξ)⇒ β ∈ FTV (τ,Ξ).

For clarity, we take a ‘garbage-in, garbage-out’ approach to the
algorithm: we omit the above sanity conditions from the rules, and
correspondingly do not check them in the implementation.

The rules DEFINE, EXPAND and IGNORE have symmetric counter-
parts that are identical apart from interchanging the equated terms
in the conclusion. Usually we will ignore these without loss of
generality.

Observe that we have no rule for the case

Γ0, αD | Ξ � ∆ ` α ≡ τ with α ∈ FTV (τ,Ξ)

so the algorithm fails if this situation arises. This is essentially an
occur check failure: α and τ cannot be unified if α occurs in τ or in
an entry that τ depends on, and τ is not a variable. Since we only
have one type constructor symbol (the function arrow .), there are
no failures due to rigid-rigid mismatch. Adding these would not
significantly complicate matters, however.

By exposing the contextual structure underlying unification we
make termination of the algorithm evident. Each recursive appeal to
unification (directly or via the solving process) either shortens the
context or preserves the context and decomposes types [McBride
2003]. We are correspondingly entitled to reason about the total
correctness of unification by induction on the algorithmic rules.

5.3 Soundness and completeness

Lemma 5 (Soundness of unification). (a) If Γ � ∆ ` τ ≡ υ,
then VTY(Γ) = VTY(∆), ∆ ` τ ≡ υ and ι : Γ � ∆ where ι is
the inclusion substitution.

(b) If Γ | Ξ � ∆ ` α ≡ τ , then VTY(Γ,Ξ) = VTY(∆),
∆ ` α ≡ τ and ι : Γ,Ξ � ∆.

Proof. By induction on the structure of derivations.

Lemma 6 (Occur check). Let α be a variable and τ a non-variable
type such that α ∈ FTV (τ). For every context Γ and substitution
θ, Γ 0 θα ≡ θτ and Γ 0 θτ ≡ θα.

Proof. It suffices to prove Γ 0 α ≡ τ and Γ 0 τ ≡ α, because θα
must contain a variable β ∈ FTV (θτ) and θτ is not a variable.

Since α is a variable but τ is not, neither reflexivity nor the
structural rule apply. Symmetry and transitivity do not apply
because their hypotheses cannot be satisifed.

Γ � ∆ ` τ ≡ υ

IDLE
Γ0, αD � Γ0, αD ` α ≡ α

DEFINE
Γ0, α :=? � Γ0, α :=β ` α ≡ β α 6= β

EXPAND
Γ0 � ∆0 ` τ ≡ β

Γ0, α :=τ � ∆0, α :=τ ` α ≡ β α 6= β

IGNORE
Γ0 � ∆0 ` α ≡ β

Γ0, vD � ∆0, vD ` α ≡ β
vD ⊥ {α, β}

SOLVE
Γ | ε � ∆ ` α ≡ τ

Γ � ∆ ` α ≡ τ τ not variable

DECOMPOSE Γ � ∆0 ` τ0 ≡ υ0 ∆0 � ∆ ` τ1 ≡ υ1

Γ � ∆ ` τ0 . τ1 ≡ υ0 . υ1

Γ | Ξ � ∆ ` α ≡ τ

DEFINES
Γ0, α :=? | Ξ � Γ0,Ξ, α :=τ ` α ≡ τ α /∈ FTV (τ,Ξ)

EXPANDS Γ0,Ξ � ∆0 ` υ ≡ τ
Γ0, α :=υ | Ξ � ∆0, α :=υ ` α ≡ τ α /∈ FTV (τ,Ξ)

DEPENDS Γ0 | βD,Ξ � ∆ ` α ≡ τ
Γ0, βD | Ξ � ∆ ` α ≡ τ α 6= β, β ∈ FTV (τ,Ξ)

IGNORES Γ0 | Ξ � ∆0 ` α ≡ τ
Γ0, vD | Ξ � ∆0, vD ` α ≡ τ

vD ⊥ FTV (α, τ,Ξ)

Figure 3. Algorithmic rules for unification

By the well-formedness conditions for contexts, if α :=υ ∈ Γ then
α /∈ FTV (υ), so the LOOKUP rule does not apply.

Lemma 7 (Completeness and generality of unification). (a) If θ :
Γ � Θ, Γ ` υ type ∧ τ type and Θ ` θυ ≡ θτ , then there
is some context ∆ such that Γ �̂∆ ` υ ≡ τ .

(b) Moreover, if θ : Γ,Ξ � Θ is such that Θ ` θα ≡ θτ and

• α ∈ VTY(Γ),

• Γ,Ξ ` τ type,

• τ is not a variable,

• Ξ contains only type variable declarations and

• β ∈ VTY(Ξ)⇒ β ∈ FTV (τ,Ξ),

then there is some context ∆ such that Γ | Ξ �̂∆ ` α ≡ τ .

Sketch. Each step preserves all solutions. The Optimist’s Lemma
justifies problem decomposition. The algorithm terminates, and the

6 2010/4/23

only case not covered by the rules is the case where the occur check
fails, indicating that no unifer exists. For details, see appendix.

5.4 Implementing unification

First, we define some helpful machinery. The onTop operator
applies its argument to the topmost type variable declaration in
the context, skipping over any other kinds of entry. The argument
function may restore the previous entry by returning Nothing , or
it may return a context extension (that contains at least as much
information as the entry that has been removed) with which to
replace it.

onTop :: (TyEntry → Contextual (Maybe Suffix))
→ Contextual ()

onTop f = do
Γ :< vD ← getContext
putContext Γ
case vD of

TY αD → do m ← f αD
case m of

Just Ξ → modifyContext (<>< Ξ)
Nothing → modifyContext (:<vD)

→ onTop f >>modifyContext (:<vD)

restore :: Contextual (Maybe Suffix)
restore = return Nothing

replace :: Suffix → Contextual (Maybe Suffix)
replace = return ◦ Just

The unify function attempts to modify the context to produce a
most general unifier for the two given types; it will fail if the types
cannot be unified given the current state of the context.

unify :: Type → Type → Contextual ()
unify (V α) (V β) = onTop $ λ(γ := d)→ case

(γ ≡ α, γ ≡ β, d) of
(True, True,) → restore
(True, False, ?) → replace (α:=!(V β) :> ε)
(False, True, ?) → replace (β:=!(V α) :> ε)
(True, False, !τ) → unify (V β) τ >> restore
(False, True, !τ) → unify (V α) τ >> restore
(False, False,) → unify (V α) (V β)>> restore

unify (V α) τ = solve α ε τ
unify τ (V α) = solve α ε τ
unify (τ0 . τ1) (υ0 . υ1) = unify τ0 υ0 >> unify τ1 υ1

The solve function attempts to unify a variable name with a (non-
variable) type, given a list of entries that the type depends on, which
must be placed into the context before it.

solve :: TyName → Suffix → Type → Contextual ()
solve α Ξ τ = onTop $ λ(γ := d)→

let occurs = γ ∈ τ ∨ γ ∈ Ξ in case
(γ ≡ α, occurs, d) of
(True, True,)→ fail "Occur check failed"

(True, False, ?)→ replace (Ξ⊕ (α:=!τ :> ε))
(True, False, !υ)→ modifyContext (<>< Ξ)

>> unify υ τ
>> restore

(False, True,)→ solve α (γ := d :> Ξ) τ
>> replace ε

(False, False,)→ solve α Ξ τ
>> restore

6. The type inference problem

6.1 Introducing type schemes

Having implemented unification, we now turn to the problem of
type inference for terms. We will reuse the abstract framework
already introduced, defining a new sort TM for term variables.
To handle polymorphism, these need to be associated with type
schemes rather than monomorphic types.

A type scheme σ is a type wrapped in one or more ∀ quantifiers or
let bindings, with the syntax

σ ::= .τ | ∀α σ | (!α :=τ in σ).

We use explicit definitions in type schemes to avoid the need for
substitution in the type inference algorithm.

We define a new statement σ scheme by the rules in Figure 4. We
observe the sanity condition Γ ` σ scheme⇒ Γ ` valid.

Γ ` σ scheme

τ type
.τ scheme

(α :=? � σ scheme)
∀α σ scheme

υ type (α :=υ � σ scheme)
(!α :=υ in σ) scheme

Figure 4. Rules for scheme validity

The structure of these rules strongly suggests that schemes arise by
discharging a list of type variable declarations over a type. In fact,
any scheme can be viewed in this way. We write (Ξ ⇑ σ) for the
generalisation of the type scheme σ over the list of type variable
declarations Ξ, defined by

ε ⇑ σ = σ

Ξ, α :=? ⇑ σ = Ξ ⇑ ∀α σ
Ξ, α :=ν ⇑ σ = Ξ ⇑ (!α :=ν in σ)

We will usually be interested in the case σ = .τ for some type τ .

When we infer the specialised type of a variable, we rely on
the ability to invert this operation, extending the contex with a
fresh copy of a scheme’s prefix. As shown above, we follow
Naraschewski and Nipkow [1999] in achieving freshness with a
simple counter, built into the Contextual monad.

Lemma 8. If Γ ` σ scheme then σ = Ξ ⇑ .τ for some Ξ and τ
such that Γ,Ξ ` τ type

Proof. By induction on the structure of σ, given that it is possible
to choose fresh variable names.

6.2 Implementing type schemes

It is convenient to represent bound variables by de Brujin indices
and free variables (i.e. those defined in the context) by names
[McBride and McKinna 2004]. Moreover, we use the Haskell
type system to prevent some incorrect manipulations of indices by
defining a ‘successor’ type [Bellegarde and Hook 1994; Bird and
Paterson 1999]

data Index a = Z | S a
deriving (Functor ,Foldable)

We can then represent schemes as

7 2010/4/23

data Schm a = Type (Ty a)
| All (Schm (Index a))
| LetS (Ty a) (Schm (Index a))

deriving (Functor ,Foldable)

type Scheme = Schm TyName

The outermost bound variable is represented by Z and the other
variables are wrapped in the S constructor. For example, the type
scheme ∀α∀β.β . 2 is represented as

All (All (Type (V (S Z) .V (S (S 2)))))

Note that the code forces us to distinguish a type τ and its
corresponding type scheme (written .τ), as the latter will be
represented by Type τ :: Scheme .

Implementing the generalisation function (⇑) is straightforward:

(⇑) :: Bwd TyEntry → Scheme → Scheme
ε ⇑ σ = σ
(Ξ :< α := d) ⇑ σ = case d of

? → Ξ ⇑ All σ′

!ν → Ξ ⇑ LetS ν σ′

where
σ′ = fmap bind σ
bind β | α ≡ β = Z

| otherwise = S β

Conversely, we can specialise a type scheme by extending the
context with fresh variables to produce a type.

specialise :: Scheme → Contextual Type
specialise (Type τ) = return τ
specialise σ = do

let (d , σ′) = unpack σ
β ← fresh d
specialise (fmap (fromS β) σ′)

where
unpack (All σ′) = (?, σ′)
unpack (LetS τ σ′) = (!τ, σ′)
fromS β Z = β
fromS β (S α) = α

6.3 Type assignment system

Let VTM be some set of term variables and let x range over VTM.
Term variable declarations DTM are scheme assignments of the
form :̂: σ, with okTM(:̂: σ) = σ scheme.

The syntax of terms is

t ::= x | t t | λx.t | let x := t in t.

Let Term be the set of terms.

We define the type assignability statement t : τ by the rules in
Figure 5, and the scheme assignability statement t :: σ for arbitrary
terms t and schemes σ thus:

t :: .τ 7→ t : τ

t :: ∀ασ 7→ (α :=? � t :: σ)

t :: (!α :=τ in σ) 7→ (α :=τ � t :: σ)

We observe the sanity conditions Γ ` x : τ ⇒ Γ ` τ type and
Γ ` x :: σ ⇒ Γ ` σ scheme.

We define Jx :̂: σKTM = x :: σ, so Γ � ∆ requires ∆ to assign a
term variable all the types that Γ assigns it, but allows x to become
more polymorphic and acquire new types. This notion certainly

∆ ` t : τ

(x :̂: .υ � t : τ)
λx.t : υ . τ

f : υ . τ a : υ
fa : τ

s :: σ (x :̂: σ � w : τ)
let x :=s in w : τ

t : τ τ ≡ υ
t : υ

Figure 5. Declarative rules for type assignment

retains stability: every variable lookup can be simulated in the more
general context. However, it allows arbitrary generalisation of the
schemes assigned to term variables which are incompatible with
the known and intended value of those variables.

As Wells [2002] points out, Hindley-Milner type inference is not
in this respect compositional. He carefully distinguishes principal
typings, given the right to demand more polymorphism, from
Milner’s principal type schemes and analyses how the language of
types must be extended to express principal typings.

We, too, note this distinction. We cannot hope to find principal
types with respect to �, so we capture Milner’s compromise by
defining a sub-relation v, by δ : Γ v ∆ if δ : Γ � ∆ and

x :̂: σ ∈ Γ ⇒ x :̂: δσ ∈ ∆.

Thus, if Γ v ∆, then ∆ assigns the same type schemes to term
variables as Γ does (modulo substitution).

As with unification, we wish to translate these declarative rules
into an algorithm for type inference. We define the type inference
problem I by

InI = Term

OutI = Type

PreI(t) = valid

I(t)〈τ〉 = t : 〈τ〉
RI〈τ〉〈υ〉 = 〈τ〉 ≡ 〈υ〉

6.4 Implementing terms

We extend the Entry data type to include declarations of term
variables. It is still not quite complete, however.

type TmName = String
data TmEntry = TmName :̂: Scheme

data Entry = TY TyEntry | TM TmEntry | . . .

A term tmay be a variable (X), an application (:$), an abstraction
(λ · .·) or a let binding (let · := · in ·). As with Ty , we parameterise
over the type of term variable names, so Tm is a foldable functor.

data Tm a = X a
| Tm a :$ Tm a
| λa.Tm a
| let a :=Tm a in Tm a

deriving (Functor ,Foldable)

type Term = Tm TmName

8 2010/4/23

7. Local contexts for local problems

7.1 Preserving order in the context

We have previously observed, but not yet exploited, the importance
of declaration order in the context, and that we move declarations
left as little as possible. Thus rightmost entries are those most local
to the problem we are solving. This will be useful when we come to
implement type inference for the let · := · in · construct, as we want
to generalise over ‘local’ type variables but not ‘global’ variables.

In order to keep track of locality in the context, we need another
kind of context entry: the # separator. We add a new validity rule

Γ ` valid
Γ# ` valid

so the (finally) complete data type of context entries is:

data Entry = TY TyEntry | TM TmEntry | #
We also refine the � relation. Let � be the partial function from
contexts and natural numbers to contexts taking Γ � n to Γ
truncated after n # separators, provided Γ contains at least n such:

Ξ � 0 = Ξ

Ξ # Γ � 0 = Ξ

Ξ # Γ � n+ 1 = Ξ # (Γ � n)

Ξ � n+ 1 undefined

We write δ : Γ � ∆ if δ is a substitution from Γ to ∆ such that, for
every vD ∈ Γ � n and S ∈ JvDK, we have that ∆ � n is defined
and ∆ ` δS.

This definition of Γ � ∆ is stronger than the previous definition,
because it requires a correspondence between the #-separated
sections of Γ and ∆, such that declarations in the first n sections of
Γ can be interpreted over the first n sections of ∆. However, it is
mostly straightforward to verify that the previous results go through
with the new definition.

We refine the v relation in a corresponding way, and further insist
for Γ v ∆ that Γ and ∆ have the same shape (list of # separators
and term variables). Formally, we say that δ : Γ v ∆ if δ : Γ � ∆
and bΓc = δb∆c, where b·c is the forgetful map from contexts to
shapes that discards type variables:

bεc = ε

bΓ, αDc = bΓc
bΓ, x :̂: σc = bΓc, x :̂: σ

bΓ #c = bΓc #

Substitution on shapes acts on type schemes only.

7.2 Fixing the unification algorithm

The only place where changing the � relation requires extra work
is in the unification algorithm, because it acts structurally over the
context, so we need to specify what happens when it finds a #
separator. It turns out that these can simply be ignored, so we add
the following algorithmic rules:

SKIP
Γ0 � ∆0 ` α ≡ β

Γ0# � ∆0# ` α ≡ β

REPOSSESS
Γ0 | Ξ � ∆0 ` α ≡ τ

Γ0 # | Ξ � ∆0# ` α ≡ τ

Proving correctness of the SKIP rule is relatively straightforward,
thanks to the following lemma.

Lemma 9. If δ : Γ �̂∆ ` P (a)〈b〉 then δ : Γ # �̂∆# ` P (a)〈b〉.

The REPOSSESS rule is more complicated. It is so named because
it moves the variable declarations in Ξ to the left of the # separator,
thereby ‘repossessing’ them. Despite this, unification does still
produce a most general solution:

Lemma 10 (Soundness and generality of REPOSSESS rule). If
Γ # | Ξ � ∆# ` α ≡ τ then VTY(Γ # Ξ) = VTY(∆#) and
ι : Γ # Ξ �̂∆# ` α ≡ τ .

Proof. Suppose Γ # | Ξ � ∆# ` α ≡ τ , so Γ | Ξ � ∆ ` α ≡ τ
as only the REPOSSESS rule applies. By induction and lemma 5,
VTY(Γ,Ξ) = VTY(∆) and ι : Γ,Ξ �̂∆ ` α ≡ τ .

For the first part, we have

VTY(Γ # Ξ) = VTY(Γ,Ξ) = VTY(∆) = VTY(∆#).

For the second part, since ι : Γ,Ξ � ∆ we have ι : Γ # Ξ � ∆#,
and ∆ ` α ≡ τ so ∆# ` α ≡ τ .

For minimality, suppose θ : Γ # Ξ � Θ # Φ and Θ # Φ ` θα ≡ θτ .
Observe that α ∈ VTY(Γ) and β ∈ VTY(Ξ) ⇒ β ∈ FTV (τ,Ξ)
by the sanity conditions. Now θα is a Θ-type and θτ is equal to
it, so the only declarations in Φ that θτ (hereditarily) depends on
must be definitions over Θ. But all the variables declared in Ξ are
used in τ , so there is a substitution ψ : Γ #Ξ � Θ# that agrees with
θ on Γ and maps variables in Ξ to their definitions in Θ. Note that
ψ ≡ θ : Γ # Ξ � Θ # Φ.

Hence ψ : Γ,Ξ � Θ and Θ ` ψα ≡ ψτ , so by hypothesis
there exists ζ : ∆ � Θ such that ψ ≡ ζ · ι : Γ,Ξ � Θ.
Then ζ : ∆# � Θ # Φ and ψ ≡ ζ · ι : Γ # Ξ � Θ # Φ, so
θ ≡ ζ · ι : Γ # Ξ � Θ # Φ.

Observe that the unification algorithm makes no changes to the
shape of the input context, so the corresponding results hold for
the more restrictive v relation.

8. A type inference algorithm

8.1 Transforming the rule system for type assignment

To transform a rule into an algorithmic form, we proceed clockwise
starting from the conclusion. For each hypothesis, we must ensure
that the problem is fully specified, inserting variables to stand for
unknown problem inputs. Moreover, we cannot pattern match on
problem outputs, so we ensure there are schematic variables in
output positions, fixing things up with appeals to unification.

Consider the rule for application, written to highlight problem
inputs and outputs as

f : 〈υ . τ〉 a : 〈υ〉
fa : 〈τ〉 .

Since we cannot match on the output of the first subproblem, we
use a metavariable instead and add a unification constraint, giving

f : 〈χ〉 a : 〈υ〉 χ ≡ υ . τ
fa : 〈τ〉 .

Furthermore, τ is an input to the unification problem, but it is not
determined by the previous inputs or outputs, so we have to bind a

9 2010/4/23

fresh variable β instead to give the algorithmic version

f : 〈χ〉 a : 〈υ〉 (β :=τ � χ ≡ υ . β)
(β :=τ � fa : 〈β〉) .

The rule for abstraction is

(x :̂: .υ � t : 〈τ〉)
λx.t : 〈υ . τ〉

which has unknown input υ, so we bind a fresh variable β to give

(β :=υ � (x :̂: .β � t : 〈τ〉))
(β :=υ � λx.t : 〈β . τ〉) .

The let rule is
s :: σ (x :̂: σ � w : τ)

let x :=s in w : 〈τ〉 .

Writing σ = (Ξ ⇑ .υ) and expanding the definition of ::, we obtain

(Ξ � s : υ) (x :̂: (Ξ ⇑ .υ) � w : τ)
let x :=s in w : 〈τ〉 .

where we let (ε � S) = S and ((Ξ, vD) � S) = (Ξ � (vD � S)).

But how can we find Ξ? This is where we use the # separator.
Instead of an unknown list of type variables, we just add a # to the
context, infer the type of s, then generalise its type by ‘skimming
off’ type variables from the top of the context until the # is reached.

We define the type inference assertion Γ v ∆ ` t : 〈τ〉 by the rules
in Figure 6. These rules are clearly structural on terms, so yield
a terminating algorithm, leading naturally to an implementation,
given in subsection 8.3.

We use Lemma 8 to ensure in rule VAR that we compute a suffix Ξ
consisting of fresh names, such that the output Γ,Ξ is well-formed.

Γ v ∆ ` t : 〈τ〉

VAR
x :̂: (Ξ ⇑ .υ) ∈ Γ

Γ v Γ,Ξ ` x : 〈υ〉

ABS
Γ, α :=?, x :̂: .α v ∆0, x :̂: .α,Ξ ` w : 〈υ〉

Γ v ∆0,Ξ ` λx.w : 〈α . υ〉 α /∈ VTY(Γ)

APP

Γ v ∆0 ` f : 〈χ〉 ∆0 v ∆1 ` a : 〈υ〉
∆1, β :=? � ∆ ` χ ≡ υ . β

Γ v ∆ ` fa : 〈β〉 β /∈ VTY(∆1)

LET

Γ# v ∆0 # Ξ0 ` s : 〈υ〉
∆0, x :̂: (Ξ0 ⇑ .υ) v ∆1, x :̂: (Ξ0 ⇑ .υ),Ξ1 ` w : 〈χ〉

Γ v ∆1,Ξ1 ` let x :=s in w : 〈χ〉

Figure 6. Algorithmic rules for type inference

8.2 Soundness and completeness

Lemma 11 (Soundness of type inference). If Γ v ∆ ` t : 〈υ〉
then ι : Γ v ∆ and ∆ ` t : 〈υ〉.

Proof. By induction on the structure of derivations.

Lemma 12 (Completeness and generality of type inference). If
θ : Γ v Θ and Θ ` t : τ then Γ v̂ ∆ ` t : 〈υ〉 for some
type υ and context ∆.

Sketch. The algorithm is structurally recursive over terms, failing
only when unification fails. Each step locally preserves all possible
solutions. For let-expressions, observe that any type specialising
any scheme for s must certainly specialise the type we infer for
s, and ipso facto, the principal type scheme we assign to x. For
details, see appendix.

8.3 Implementing type inference

The infer function attempts to infer the type of the given term,
updating the context with the minimum necessary information.

infer :: Term → Contextual Type

To infer the type of a variable, we look up its type scheme in the
context, and specialise this scheme with fresh variables.

infer (X x) = getContext >>= find >>= specialise
where

find :: Context → Contextual Scheme
find (Γ :< TM (y :̂: σ))
| x ≡ y = return σ

find (Γ :<) = find Γ
find ε = fail "Missing variable"

To infer the type of a λ-abstraction, we recursively infer the type of
its body w with variable x assigned type-scheme .α, with α fresh.

infer (λx .w) = do
α← fresh ?
υ ← x :̂: Type (V α) � infer w
return (V α . υ)

To infer the type of an application, we infer the type χ of the
function f , then the type υ of the argument. Unifying χ with υ .β,
where β is a fresh variable, produces the result.

infer (f :$ a) = do
χ← infer f
υ ← infer a
β ← fresh ?
unify χ (υ .V β)
return (V β)

Finally, to infer the type of a let construct, we infer the type of the
definiens s and generalise it to yield a scheme σ. We then infer the
type of the body w in the context where x :̂: σ.

infer (let x :=s in w) = do
σ ← generaliseOver (infer s)
x :̂: σ � infer w

The generaliseOver operator adds a # to the context, evaluates its
argument, then generalises over type variables to the right of the #
marker.

generaliseOver :: Contextual Type → Contextual Scheme
generaliseOver mt = do

modifyContext (:<#)
τ ← mt
Ξ← skimContext
return (Ξ ⇑ Type τ)

where
skimContext :: Contextual (Bwd TyEntry)

10 2010/4/23

skimContext = do
Γ :< vD ← getContext
putContext Γ
case vD of
→ return ε
TY αD → (:<αD) <$> skimContext
TM → error "Unexpected TM variable!"

The (�) operator appends a term variable declaration to the context,
evaluates its second argument, then removes the declaration.

(�) :: TmEntry → Contextual a → Contextual a
x :̂: σ � ma = do

modifyContext (:<TM (x :̂: σ))
a ← ma
modifyContext extract
return a

where
extract :: Context → Context
extract (Γ :< TM (y :̂:))
| x ≡ y = Γ

extract (Γ :< TY xD) = (extract Γ) :< TY xD
extract (Γ :<) = error "Bad context entry!"

extract ε = error "Missing TM variable!"

9. Discussion

We have arrived at an implementation of Hindley-Milner type
inference which involves all the same steps as Algorithm W, but not
necessarily in the same order. In particular, the dependency analysis
which W performs all of a sudden in the let-rule is here pushed
down to a requirement that the underlying unification algorithm
maintain the well-foundedness of the context.

Our algorithm is presented as a system of problem transformation
locally preserving all possibile solutions, hence finding a most
general global solution if any at all. Accumulating solutions to
decomposed problems is justified simply by the stability of solu-
tions with respect to information increase. We have established a
discipline of problem solving which happens to be complete for
Hindley-Milner type inference but in any case maintains a coupling
of soundness with generality.

Maintain context validity, make definitions anywhere and only
where there is no choice, so the solutions you find will be gen-
eral and generalisable locally: this is a key design principle for
elaboration of high-level code in systems like Epigram and Agda;
bugs arise from its transgression. By giving a disciplined account
of ‘current information’ in terms of contexts and their information
ordering, we provide a means to investigate these problems and
justify the steps we take to repair them.

We are, however, missing yet more context. Our task was greatly
simplified by studying a structural type inference process for
‘finished’ expressions in a setting where unification is complete.
Each subproblem is either solved or rejected on first inspection—
there is never a need for a ‘later, perhaps’ outcome. As a result,
the conventional control discipline of ‘direct style’ recursive pro-
gramming is adequate to the task. If problems could get stuck, how
might we abandon them and return to them later? By storing their
context, of course!

Here, we have combined the linguistic contexts for the various
sorts of variable involved in problems; our next acquisition is
the syntactic context of the target term, interspersing variable
declarations with components of its zipper [Huet 1997]. We thus

become free to abandon fixed recursion strategies and refocus
wherever progress is to be made. The tree-like proof states of
McBride’s thesis evolved into exactly such ‘zippers with binding’
in the implementation of Epigram.

As we have seen, an information increase is nothing other than the
extension of a simultaneous substitution from variables and terms
to declarations and derivations. Our generic analysis of the role of
declarations in derivations shows that stability is endemic, amount-
ing to the action of hereditary substitution on ‘cut-free’ derivations.
And that is exactly what it should be. We have rationalised Hindley-
Milner type inference by adapting a discipline for interactively
constructing inhabitants of dependent types as the means to manage
unknowns when incrementally constructing solutions to problems.
The analysis can only become clearer, the technology simpler,
as we bring these two kinds of construction together, mediating
problems as types.

References
Françoise Bellegarde and James Hook. Substitution: a formal methods

case study using monads and transformations. Science of Computer
Programming, 23(2-3):287–311, 1994.

Richard Bird and Ross Paterson. de Bruijn notation as a nested datatype.
Journal of Functional Programming, 9(1):77–91, 1999.

Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages (POPL ’82),
pages 207–212, Albuquerque, New Mexico, USA, 1982. ACM.

GHC Team. The Glorious Glasgow Haskell Compilation System user’s
guide, version 6.12.1. Section 7.5. Extensions to the "deriving" mech-
anism, 2009. URL http://www.haskell.org/ghc/docs/latest/
html/users_guide/deriving.html#deriving-typeable.

Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–
554, 1997.

Bruce J. McAdam. On the unification of substitutions in type inference.
In Implementation of Functional Languages (IFL’ 98), pages 139–154.
Springer, 1998.

Conor McBride. Dependently Typed Functional Programs and their
Proofs. PhD thesis, University of Edinburgh, 1999. Avail-
able from http://www.lfcs.informatics.ed.ac.uk/reports/
00/ECS-LFCS-00-419/.

Conor McBride. First-Order Unification by Structural Recursion. Journal
of Functional Programming, 13(6), 2003.

Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, January 2004.

Conor McBride and James McKinna. Functional pearl: I am not a number–I
am a free variable. In Proceedings of the 2004 ACM SIGPLAN workshop
on Haskell, pages 1–9, Snowbird, Utah, USA, 2004. ACM.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14(4):321–358, 1992.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348–375, December 1978.

Wolfgang Naraschewski and Tobias Nipkow. Type inference verified:
Algorithm W in Isabelle/HOL. Journal of Automated Reasoning, 23
(3):299–318, November 1999.

Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201–224, 1995.

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden, September 2007.

Peter Norvig. Correcting a widespread error in unification algorithms.
Software: Practice and Experience, 21(2):231–233, 1991.

Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic
non-commutative linear logic. In Proceedings of the 4th international

11 2010/4/23

http://www.haskell.org/ghc/docs/latest/html/users_guide/deriving.html#deriving-typeable
http://www.haskell.org/ghc/docs/latest/html/users_guide/deriving.html#deriving-typeable
http://www.lfcs.informatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/
http://www.lfcs.informatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/

conference on Typed Lambda Calculi and Applications (TLCA ’99),
pages 295–309, 1999.

Robert Pollack. Implicit syntax. In Informal Proceedings of First Workshop
on Logical Frameworks, May 1990.

J. Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

J. B. Wells. The essence of principal typings. In ICALP ’02: Proceedings
of the 29th International Colloquium on Automata, Languages and
Programming, pages 913–925, London, UK, 2002. Springer.

A. Appendix

Proof of lemma 4 (Optimist’s Lemma). We have that θ · δ : Γ � Θ
by Lemma 1.

To show Θ ` P ∧Q(a, b)〈θr, s〉, it suffices to show Θ ` P (a)〈θr〉
and Θ ` Q(b)〈s〉. The latter holds by assumption. For the former,
note that ∆ ` P (a)〈r〉 and hence Θ ` θ(P (a)〈r〉) by stability of
P (a)〈r〉. But θ(P (a)〈r〉) = P (a)〈θr〉 by definition.

Finally, suppose there is some θ : Γ � Θ and outputs t, u such that
Θ ` P ∧ Q(a, b)〈t, u〉, so Θ ` P (a)〈t〉 and Θ ` Q(b)〈u〉. Since
δ : Γ �̂∆ ` P (a)〈r〉, there exists ζ1 : ∆ � Θ such that θ ≡ ζ1 · δ
and Θ ` RP 〈ζ1r〉〈t〉. But then θ : ∆ �̂ Θ ` Q(b)〈s〉, so there
exists ζ2 : Θ � Θ such that ζ1 ≡ ζ2 · θ and Θ ` RQ〈ζ2s〉〈u〉.
Hence θ ≡ ζ2 · (θ · δ) and Θ ` RP∧Q〈ζ2(θr), ζ2s〉〈t, u〉.

Proof of lemma 7 (Completeness and generality of unification). It
suffices to show that the algorithm succeeds and produces a
solution that is below Θ. We proceed by induction on the call
graph; since the algorithm terminates, this is well-founded.

(a) (i) Suppose υ = α and τ = β are variables. Let Γ = Γ0, vD
and examine vD:

• If v = α = β are all the same variable, then the IDLE
rule applies, ∆ = Γ and the result is trivial.

• If vD = α :=? then the DEFINE rule applies, ∆ =
Γ0, α := β and θ : ∆ � Θ. The case vD = β :=? is
similar.

• If vD = α := χ then Θ ` θα ≡ θχ by definition of
�, and Θ ` θα ≡ θβ by hypothesis, so Θ ` θβ ≡ θχ
by transitivity and symmetry. But then θα : Γ0 � Θ
where θα is θ with the type assigned to α removed,
and Θ ` θαβ ≡ θαχ, since β and χ cannot depend
on α by the sanity conditions. Now, by induction,
Γ0 � ∆0 ` β ≡ χ for some ∆0. with θα : ∆0 � Θ.
Hence the EXPAND rule applies, ∆ = ∆0, α :=υ and
θ : ∆ � Θ. The case vD = β :=υ is similar.

• Otherwise, vD ⊥ {α, β} and the IGNORE rule applies
by a similar argument.

(ii) Now suppose wlog that υ = α is a variable and τ is not a
variable. The conditions for part (b) hold, so by induction,
Γ | ε � ∆ ` α ≡ τ and the SOLVE rule applies.

(iii) Otherwise, we have τ = τ0 . τ1 and υ = υ0 . υ1. Then
Θ ` θτ0 ≡ θυ0 and Θ ` θτ1 ≡ θυ1, so by induction
there exist contexts ∆0,∆ such that Γ � ∆0 ` τ0 ≡ υ0

and ∆0 � ∆ ` τ1 ≡ υ1. Hence the DECOMPOSE rule
applies, and θ : ∆ � Θ by the Optimist’s lemma.

(b) Let Γ = Γ0, vD.

(i) If v = α ∈ FTV (τ,Ξ), then there is some non-variable
type χ such that Θ ` θα ≡ θχ and α ∈ FTV (χ). But
this cannot occur, by lemma 6.

(ii) If vD = α :=? and α /∈ FTV (τ,Ξ), then the DEFINES
rule applies, ∆ = Γ0,Ξ, α := τ and θ : ∆ � Θ.

(iii) If vD = α := χ and α /∈ FTV (τ,Ξ), then Θ ` θα ≡
θχ, so Θ ` θχ ≡ θτ by symmetry and transitivity.
Moreover, Γ0,Ξ ` τ type since α /∈ FTV (τ,Ξ), and
θα : Γ0,Ξ � Θ so by induction Γ0,Ξ � ∆0 ` χ ≡ τ for
some ∆0 with θα : ∆0 � Θ. Hence the EXPANDS rule
applies with ∆ = ∆0, α :=χ and θ : ∆ � Θ.

(iv) If v = β for α 6= β and β ∈ FTV (υ,Ξ) then
Γ0 | βD,Ξ � ∆ ` α ≡ τ is well-posed, so it has a
solution by induction and the DEPENDS rule applies.

(v) Otherwise vD ⊥ FTV (α, τ,Ξ) and Γ0 | Ξ � ∆0 ` α ≡
τ is well-posed, so it has a solution by induction and the
IGNORES rule applies with ∆ = ∆0, vD.

Proof of lemma 12 (Completeness and generality of type inference).
It suffices to show that the algorithm succeeds and delivers a result
that is below (τ, θ,Θ). We proceed by structural induction.

Variables. If t = x is a variable, then by inversion x :̂: σ ∈ Θ.
Now by definition of v, x :̂: (Ξ ⇑ υ) ∈ Γ where σ = θ(Ξ ⇑ υ).
Hence the VAR rule applies giving Γ v Γ,Ξ ` x : 〈υ〉.
The proof of Θ ` x : τ must consist of applying Θ x :: (θΞ ⇑
θυ) to some Θ-types, so it determines a map from the unbound
type variables of Ξ to types over Θ, and hence a substitution
ζ : Γ,Ξ v Θ that agrees with θ on Γ and maps type variables
in Ξ to their definitions in Θ. Thus θ ≡ ζ · ι : Γ v Θ.

Let bindings. If t = (let x := s in w), then by inversion there
is some scheme σ = (Ψ ⇑ .τs) such that Θ ` s :: σ and
Θ, x :̂: σ ` w : τ . Then Θ# ` s :: (Ψ ⇑ .τs) so Θ # Ψ ` s : τs.

Moreover θ : Γ# � Θ #Ψ, so by induction Γ# v ∆0 # Ξ0 ` s : 〈υ〉
and there exists ζ0 : ∆0 # Ξ0 v Θ # Ψ such that θ ≡ ζ0 · ι and
Θ # Ψ ` ζ0υ ≡ τs.
Now ζ0|∆0 : ∆0 v Θ, so

ζ0|∆0 : ∆0, x :̂: (Ξ0 ⇑ .υ) v Θ, x :̂: ζ0(Ξ0 ⇑ .υ).

and (note the� relation since we are generalising the type scheme)

ι : Θ, x :̂: (Ψ ⇑ .τs) � Θ, x :̂: ζ0(Ξ0 ⇑ .υ)

so by stability of type assignment under the � relation,

Θ, x :̂: ζ0(Ξ0 ⇑ .υ) ` w : τ.

Hence, by induction,

∆0, x :̂: (Ξ0 ⇑ .υ) v ∆1, x :̂: (Ξ0 ⇑ .υ),Ξ1 ` w : 〈χ〉

and there is some

ζ1 : ∆1, x :̂: (Ξ0 ⇑ .υ),Ξ1 v Θ, x :̂: ζ0(Ξ0 ⇑ .υ)

such that ζ0|∆0 ≡ ζ1 · ι and Θ, x :̂: ζ0(Ξ0 ⇑ .υ) ` ζ1χ ≡ τ .

Now the LET rule applies to give

Γ v ∆1,Ξ1 ` let x :=s in w : 〈χ〉

and we have ζ1 : ∆1,Ξ1 v Θ, Θ ` ζ1χ ≡ τ and θ ≡ ζ1 · ι.

12 2010/4/23

λ-abstractions. If t = λx.w is an abstraction, then by inversion
Θ ` τ ≡ τ0 .τ1 for some types τ0 and τ1, and Θ, x :̂: .τ0 ` w : τ1.
Taking θ′ = [τ0/α]θ, we have that

θ′ : Γ, α :=?, x :̂: .α v Θ, x :̂: .τ0

and hence, by induction,

Γ, α :=?, x :̂: .α v ∆0, x :̂: .α,Ξ ` w : 〈υ〉
with ζ : ∆0, x :̂: .α,Ξ v Θ, x :̂: .τ0 such that θ′ ≡ ζ · ι and
Θ, x :̂: .τ0 ` ζυ ≡ τ1.

Thus the ABS rule applies, so we have

Γ v ∆0,Ξ ` λx.w : 〈α . υ〉,
ζ : ∆0,Ξ v Θ, θ ≡ ζ · ι and Θ ` ζ(α . υ) ≡ τ0 . τ1.

Applications. If t = fa is an application, then Θ ` f : τ0 . τ , so
by induction Γ v ∆0 ` f : 〈χ〉 and there exists ζ0 : ∆0 v Θ such
that θ ≡ ζ0 · ι and Θ ` ζ0χ ≡ τ0 . τ .

Now Θ ` a : τ0, so by induction ∆0 v ∆1 ` a : 〈υ〉 and there
exists ζ1 : ∆1 v Θ such that ζ0 ≡ ζ1 · ι and Θ ` ζ1υ ≡ τ0.

Let ζ2 = [τ/β]ζ1, then ζ2 : ∆1, β :=? v Θ. Now Θ ` ζ2χ ≡
τ0 . τ since χ is a ∆0 type so Θ ` ζ2χ ≡ ζ0χ. Similarly, and
since ζ2 maps β to τ , we have Θ ` ζ2(υ . β) ≡ τ0 . τ . Hence
Θ ` ζ2χ ≡ ζ2(υ . β) so we have ∆1, β :=? v ∆ ` χ ≡ υ . β
with ζ : ∆ v Θ such that ζ2 ≡ ζ ·ι by completeness of unification.
Hence the APP rule applies, so Γ v ∆ ` fa : 〈β〉, and θ ≡ ζ · ι.

13 2010/4/23

	Introduction
	Motivating Context

	Types and type variables
	Syntax
	Introducing contexts
	Making types meaningful
	Conjunctions
	Type variable declarations
	Type equations
	Implementing types and contexts

	Information and stable statements
	Information order
	Stability
	Composite statements

	Problems
	What is a problem?
	The Optimist's Lemma

	Deriving a unification algorithm
	Transforming the rule system for equivalence
	Constructing a unification algorithm
	Soundness and completeness
	Implementing unification

	The type inference problem
	Introducing type schemes
	Implementing type schemes
	Type assignment system
	Implementing terms

	Local contexts for local problems
	Preserving order in the context
	Fixing the unification algorithm

	A type inference algorithm
	Transforming the rule system for type assignment
	Soundness and completeness
	Implementing type inference

	Discussion
	References
	Appendix

