
Type Inference for Units of Measure

Research Paper

Adam Gundry

University of Strathclyde, Glasgow
adam.gundry@cis.strath.ac.uk

Abstract. Units of measure are an example of a type system extension
involving a nontrivial equational theory. Type inference for such an
extension requires equational unification. This complicates the gen-
eralisation step required for let-polymorphism in ML-style languages,
as variable occurrence does not imply dependency. Previous work on
units of measure (by Kennedy in particular) integrated free abelian
group unification into the Damas-Milner type inference algorithm, but
struggled with generalisation. I describe an approach to problem solving
based on incremental minimal-commitment refinements in a structured
context, and hence present abelian group unification and type unification
algorithms which make type generalisation direct.

1 Introduction

Consider this Haskell function, traditionally of type Float → Float :

distanceTravelled time = velocity ∗ time + (acceleration ∗ time ∗ time) / 2
where {velocity = 2.0; acceleration = 3.6}

Kennedy [5–7] teaches us how to check units of measure: with velocity in m ·s−1
and acceleration in m·s−2, the system could infer the type Float〈s〉 → Float〈m〉.
Type inference relies on unification, but units need a more liberal equational
theory than syntactic equality, as m · s−1 · s should mean the same thing as m.
Kennedy uses the theory of abelian groups. He has introduced units of measure
with polymorphism into the functional programming language F# [15].

The Damas-Milner type inference algorithm relies on unification for variable
specialisation, and on dependency analysis for let-generalisation. Using the
occurs check to identify generalisable variables (those that are free in the type but
not the typing environment) is problematic for the equational theory of abelian
groups, as variable occurrence does not imply variable dependency.
Later we will see another way of looking at this: given the equation α ≡ τ ,
where α is a variable and τ is a type, the solution α :=τ is not necessarily most
general. This paper’s contribution is an analysis of dependency in nontrivial
equational theories, and the theory of abelian groups in particular, that exposes
and resolves the difficulties with generalisation that they present.

Kennedy gives the example [7, p. 292] (in slightly different notation: here F〈d〉
is a type of numbers with units d, defined in Section 4.1)

λx. let d :=divx in (d mass, d time), where

div :: ∀ab . F〈a · b〉→F〈a〉→F〈b〉, mass :: F〈kg〉, time :: F〈s〉.
If one adds constraint solving for units to Damas-Milner with the usual
occurrence-based let-generalisation rule, the resulting algorithm fails to infer
a type for this term, because polymorphism is lost: d is given the monotype
F〈a〉→F〈c ·a−1〉 where a and c are unification variables, and a cannot unify with
kg and s. However, if d is given its principal type scheme ∀a.F〈a〉→F〈c · a−1〉,
then the term has type F〈c〉→F〈c ·kg−1〉×F〈c · s−1〉, as described in Section 5.

The difficulty is that the algorithm fails to assign principal type schemes to open
terms (even without a Haskell-style monomorphism restriction) because of the
nontrivial equational theory on types. Type systems with different notions of
polymorphism (such as higher-rank or intersection types) do not support the
relevant equational theory or provide a direct solution.

One possible way around this difficulty is Kennedy’s notion of generaliser,
“a substitution that ‘reveals’ the polymorphism available under a given type
environment” [6, p. 23]. Such a substitution preserves types in the context (up
to the equational theory) but permutes group variables so that the Damas-
Milner generalisation rule can be used. Calculating a generaliser is specific to
the equational theory, technically nontrivial, and not implemented in F#:

> fun x -> let d y = x / y in (d mass, d time) ;;

---^^^^

error FS0001: Type mismatch.

Expecting a float<kg> but given a float<s>

The unit of measure ’kg’ does not match the unit of measure ’s’

In previous work [4], McBride, McKinna and I described a rationalisation of
syntactic unification and Hindley-Milner type inference problem solving that
provides a more refined account of dependency analysis. Term and type variables
live in a dependency-ordered context. Problems are solved in small steps, each of
which is most general (for unification) and involves minimal extra dependency.
This makes let-generalisation particularly easy: we simply ‘skim off’ generalisable
type variables from the end of the context, as nothing can depend on them.

In this paper I extend the unification algorithm (and hence type inference)
to support the theory of abelian groups. Unification that does not handle
dependencies will show up as the source of the difficulty described above, leading
to a straightforward solution. With more structure in the context than just a set
of typing assumptions, it is easier to see where generality can be lost, and the loss
of polymorphism can be avoided in the first place rather than trying to recover
it after the fact. Maintaining generality explains the need for a new algorithm
for abelian group unification: while it can be reduced to linear integer constraint
solving, standard constraint solving algorithms do not track dependencies.

This development is an example of the value of our approach to problem
solving: it gives a clearer account of the subtle issues surrounding generalisation.
Vytiniotis et al. [16] argue that “let should not be generalised” because of the
difficulties generalisation presents in their setting (a complex equational theory
including type-level functions and GADT local equality constraints). They may
well be right; perhaps a better account of generalisation will help us decide.

In the sequel, I describe a framework for contextual problem solving algorithms
(Section 2) and a new algorithm for abelian group unification (Section 3). Using
this, I extend type unification to handle units of measure (Section 4). I sketch the
type inference algorithm (Section 5), then conclude with related work and future
directions (Section 6). A Haskell implementation of the algorithms is available
online, along with a technical report containing full proofs [3].

Acknowledgments I thank Conor McBride and James McKinna for all
their help and fruitful collaboration. Attendees at TFP 2011 provided valuable
feedback, as did the anonymous reviewers of previous versions. This work was
supported by the Microsoft Research PhD Scholarship Programme.

2 Problem solving in context

First I describe a framework for unification and type inference problem-solving
algorithms that makes it is easy to prove they deliver most general results.
Problem solving means evolving the initial context into one in which the
problem is solved, given an ‘information increase’ relation between contexts that
captures legitimate steps towards a solution. A strategy based on minimal sound
information increases is easily seen to be most general if all judgments are ‘stable’
(once a judgment holds in a context, subsequent information increases do not
invalidate it). The setup here induces stability by construction.

The syntax of sorts, contexts and expressions is given in Figure 1. Variable
sorts are TY for types, GR for groups and TM for terms. Informally, a well-
formed context is a list of variable declarations in dependency order. Unlike a
traditional typing environment, type variables appear in the context structure.

Sorts T ::= TY | GR | TM
Contexts Γ,∆,Θ ::= E | Γ, xDT | Γ #
Variables (any sort) x ∈ VT

Type variables α, β, γ ∈ VTY

Group variables a, b, c ∈ VGR

Properties (sort TY or GR) DTY, DGR ::= ? | (:=e)
Expressions (sort TY or GR) d, e, f ::= . . .
Types (expressions of sort TY) τ, υ ::= α | τ→υ

Fig. 1. Syntax

More precisely, a context is a list of declarations xDT (giving each variable
x ∈ VT a property DT) and # markers (to be discussed in Section 2.1). The
empty context is written E or omitted. A type or group variable α is either
unknown (α?) or defined (α :=e). Expressions of sort GR are given in Section 3;
sort TM is introduced in Section 5. As is conventional, I assume a countable
supply of fresh variable names of each sort that can be generated as required.

Statements are assertions that can be judged in contexts. The judgment Γ ` S
means statement S holds in context Γ . For now, the syntax of statements is:

S ::= valid the context is well-formed;
| S ∧ S′ both statements S and S′ hold;
| e ≡T e

′ e and e′ are equivalent expressions of sort T ;
| e is T e is a well-formed expression (defined by e ≡T e).

I regard Γ ` · ≡T · as a partial equivalence relation, reflexive on well-formed
expressions, so e is T means e ≡T e. Thus τ is a well-formed type in Γ if
Γ ` τ is TY. A statement is well-formed if it contains well-formed expressions.

Figure 2 gives rules to construct a valid context and interpret variables in the
context. To avoid nonsensical contexts such as α :=α, not all properties are valid
extensions to a context. A validity map okT from properties to statements gives a
statement that must hold in Γ for a property DT to be a valid extension Γ, xDT .
Declarations are given meaning by an interpretation map J·KT from declarations
of sort T to statements, used by the Lookup rule. Crucially, this is the only rule
that uses a declaration in the context to prove a statement. Information increase
preserves applicability of Lookup; stability then follows inductively. Figure 2
also gives rules for conjunctions and equivalence, omitting the (fixed) context.

The rules ensure that a valid context has no duplicated variables. I write VT (Γ)
for the set of variables bound in the context Γ , which is different from the
set of free variables in a context suffix or expression X, written FVT (X). Thus
VTY(Γ0) = {α, β} and FVTY(β :=α) = {α}. A valid context has no free variables.

For type and group variables, the ? property is always valid, but definitions must
be well-formed expressions. A declaration means that the corresponding variable

Γ ` S

E ` valid
Γ ` valid Γ ` okTD

Γ, xDT ` valid
x ∈ VT \ VT (Γ) Γ ` valid

Γ # ` valid

Lookup xDT ∈ Γ
Γ ` JxDT KT

S S′

S ∧ S′

d ≡T e
e ≡T d

d ≡T e e ≡T f
d ≡T f

τ0 ≡TY υ0 τ1 ≡TY υ1
τ0→τ1 ≡TY υ0→υ1

Fig. 2. Rules for context validity, lookup, conjunction and equivalence

is a well-formed expression and is equal to its definition (in any):

okT (?) 7→ valid,
okT (:=e) 7→ e is T,

Jα?KT 7→ α is T,
Jα :=eKT 7→ α ≡T e.

For example, Γ0 = α?, β := α→ α is a valid context and Γ0 ` β ≡ α→ α by
Lookup. However, β :=α, α? is not a valid context because β is not well-defined.

2.1 Solving problems by increasing information

What does it mean to increase information in a context? A substitution δ from
Γ to ∆ is given by maps δT : VT (Γ)→ {e | ∆ ` e is T} from variables in Γ to
well-formed expressions over ∆ for sorts T ∈ {TY,GR}. It can be applied to a
well-formed expression e (or statement S) over Γ , replacing every variable x of
sort T with δT (x) to give a well-formed expression δe (or statement δS) over ∆.
Equivalence of substitutions is considered up to the equational theory, comparing
values at all variables in the source context: if δ and θ are substitutions from Γ
to ∆ then δ ≡ θ means ∀T ∈ {TY,GR}. ∀x ∈ VT (Γ). ∆ ` δx ≡T θx.

Substitutions describe moves from one context to another. For example, the
identity function is a substitution from α?, β := α→ α to α?, β?. However, a
legitimate solution step must also preserve information: the interpretation JxDKT
of a context entry xDT from the old context must hold in the new context (under
the substitution). Thus the identity function is not an information increase
between these contexts, as β ≡TY α→α does not hold in the new context.

Information increases must also respect the dependency order in the context.
Localities within the context are delimited using # separators. These will be
placed by the type inference algorithm when inferring the type of a let-definition,
so it can be generalised over the declarations in the locality. Making a variable
less local (moving it right to left of a separator) reduces the ability to generalise
over it, so should be done only when essential for solving the problem. Making
a variable more local (moving it left to right) is never permissible.

Let�be the partial function from contexts and natural numbers to contexts such
that Γ �n is Γ truncated after n occurrences of # separators, that is,

(Ξ0 #Ξ1 # · · · #Ξm)�n 7→
{
Ξ0 # · · · #Ξn, if n ≤ m,
undefined, if n > m.

A substitution δ from Γ to ∆ is an information increase, written δ : Γ v ∆, if
for all n ∈ N with xDT ∈ Γ �n, we have that ∆�n is defined and ∆�n ` δJxDKT .
I write Γ v ∆ if δ is the identity substitution ι.

The idea is that the localities of Γ and ∆ line up, and declarations in a locality
of Γ hold as equations in the corresponding locality of ∆. An example increase
is α? # β? v β?, α :=β→β # , but on the other hand, β?, α :=β→β # 6v α? # β?
as the first locality of the new context does not support β is TY or α ≡ β→β.

The information increase relation can be used to define solutions to problems. A
context Γ and well-formed expressions d and e form a unification problem d ≡T e.
A solution is a context ∆ and an information increase δ : Γ v ∆ such that
∆ ` δd ≡T δe. This solution is minimal or most general if every other solution
θ : Γ v Θ factors through it, i.e. there exists ζ : ∆ v Θ such that θ ≡ ζ ◦ δ (with
◦ the usual composition of substitutions). If the identity substitution is minimal,
write Γ v̂ ∆ ` d ≡T e. For example, in the context α? # β?, the type unification
problem α ≡TY β→ β has α? # β? v̂ β?, α := β→ β# ` α ≡TY β→ β a minimal
solution. The algorithms will find solutions using the identity substitution, but
the solutions are minimal with respect to arbitrary substitutions.

A statement S is stable if it is preserved by information increase, that is, if
Γ ` S and δ : Γ v ∆ then ∆ ` δS. Since information increases preserve the
interpretations of variable declarations, and only the Lookup rule is used to
extract information from the context, stability holds by construction. Problems
expressed as stable statements can be solved using a minimal commitment
strategy (McBride’s “optimistic optimisation” [4, 9]) to give minimal solutions.

3 Abelian group unification

I now consider abelian group unification problems in the framework of Section 2.
A group expression (with constants in K) is an expression of sort GR given by

d, e, f ::= a | k | 1 | d · d | d−1 ,

where a ∈ VGR and k ∈ K. The rules for equivalence in Figure 3 extend those in
Figure 2 by reflexivity and congruence (making group expressions well-formed),
plus the four group axioms of commutativity, associativity, inverses and identity.

Let dn mean d multiplied by itself n times and d−n mean (dn)
−1

. Group
expressions have a normal form

∏
i di

ni where the ni are nonzero integers and the
di are distinct atoms (variables or constants) sorted in some order. For example,
the expression a · a · b · 1 · b · a has normal form a3 · b2 (if a < b in the order).

d ≡GR e

1 ≡GR 1 k ≡GR k
k ∈ K d ≡GR e

d−1 ≡GR e
−1

d0 ≡GR e0 d1 ≡GR e1
d0 · d1 ≡GR e0 · e1

d is GR e is GR
d · e ≡GR e · d

d is GR e is GR f is GR
(d · e) · f ≡GR d · (e · f)

d is GR
d · (d−1) ≡GR 1

d is GR
d · 1 ≡GR d

Fig. 3. Declarative rules for group expression equivalence

Consider the equation a3 · b2 ≡ 1 in the context a?, b?. As 2 does not divide 3, b
cannot be defined to solve this equation, but the problem can be simplified by
b :=c · a−1 where c is a fresh variable. This leaves a · c2 ≡ 1 in the context a?, c?,
which is solved by rearranging and taking a :=c−2 to give c?, a :=c−2, b :=c ·a−1.

More generally, when solving such an equation, one can ask whether a variable
has the largest power, and if not, reduce the other powers by it to simplify the
problem. Some notation is in order. Suppose d ≡

∏
i di

ni and define:

maxpow(d) = max{|ni| | di is a variable}, highest absolute variable power;

Qn(d) =
∏

i di
(ni quotn), quotient by n of every power;

Rn(d) =
∏

i di
(ni remn), remainder by n of every power;

where · quot · is integer division truncated towards zero, and · rem · is the
corresponding remainder. The important point is that d ≡GR (Qn(d))

n ·Rn(d).

3.1 The abelian group unification algorithm

In this section, I give a new algorithm for unification problems d ≡GR e. The
inverse operation means it suffices to solve problems d′ ≡GR 1, written d′ id.

Figure 4 shows the algorithm presented as a collection of inference rules. Given
as input a context Γ, Ψ and a group expression d, the judgment Γ, [Ψ]� ∆ ` d id
means that the algorithm outputs the context ∆ such that ∆ ` d id. Note that
the rules are entirely syntax-directed: at most one rule applies for any possible
initial context and group expression. They lead directly to an implementation.

So how does the algorithm work? If the problem is 1 id, then it is Trivial.
Otherwise, it moves back through the context, skipping over variables that do
not occur in the problem (including type and term variables) using Ignore,
and moving through localities using Repossess. When a defined variable is
encountered, it is substituted out (with Expand) to simplify the problem.

The boxed suffix Ψ will either be empty (written E) or contain only the unknown
variable with the strictly largest power in d, if any. The Reduce and Collect
rules move this variable back in the context, since there is no simplification that
can usefully be applied to it. Other rules will insert the variable into the context
when it no longer has the largest power.

The interesting cases arise when an unknown variable a, that occurs in the
problem, in reached. This is written (an ·e) id, always meaning that a /∈ FVGR(e).
Suppose the normal form of e is

∏
i ei

ni . There are four possibilities, either:

(1) n divides ni for all i;

(2) e has at least one variable and |n| ≤ maxpow(e) but case (1) does not apply;

(3) e has at least one variable and |n| > maxpow(e); or

(4) e has no variables.

Γ, [Ψ]� ∆ ` d id

Trivial
Γ, [E]� Γ ` 1 id

Repossess
Γ, [Ψ]� ∆ ` d id
Γ #, [Ψ]� ∆# ` d id

Expand
Γ, Ψ, [E]� ∆ ` fn · e id

Γ, a :=f, [Ψ]� ∆, a :=f ` an · e id

Ignore
Γ, [Ψ]� ∆ ` d id

Γ, xD, [Ψ]� ∆,xD ` d id
x /∈ FVGR(d)

Define
Γ, a?, [Ψ]� Γ, Ψ, a :=f−1 ` an · fn id

n 6= 0

Reduce
Γ, Ψ, [b?]� ∆ ` bn ·Rn(e) id

Γ, a?, [Ψ]� ∆, a :=b ·Qn(e)−1 ` an · e id
|n| 6 maxpow(e), b fresh

Collect
Γ, [a?]� ∆ ` an · e id
Γ, a?, [E]� ∆ ` an · e id

|n| > maxpow(e)

Fig. 4. Algorithmic rules for abelian group unification

Case (1). If n divides ni for all i, then there is some f such that e ≡ fn. The
rule Define applies and sets a := f−1 to give an · e ≡ an · fn ≡ f−n · fn ≡ 1.
This is clearly a solution, and it is most general for the free abelian group.

Case (2). If not, and |n| ≤ maxpow(e), then the Reduce rule applies and
simplifies the problem by reducing the powers modulo n. Recall that we have
e ≡ Qn(e)

n · Rn(e) where Qn(e) takes the quotient by n of the powers in e.

Hence, generating a fresh variable b and defining a :=b ·Qn(e)
−1

gives

an · e ≡ (b ·Qn(e)
−1

)
n
· e ≡ bn · (e ·Qn(e)

−n
) ≡ bn ·Rn(e).

Case (3). Suppose |n| > maxpow(e), so neither of the two previous cases apply,
but there is at least one variable in e. Now n is the largest power of a variable,
so reducing the powers modulo n would leave them unchanged. Instead, the
Collect rule moves a further back in the context. This rule maintains the
invariant that Ψ contains only the variable with the largest power, if any; the
invariant also guarantees that Ψ will be empty when the rule applies.

Case (4). If e has no variables and n does not divide the powers of the constants
in e, then an · e ≡GR 1 has no solution in the free abelian group.

3.2 Correctness of the abelian group unification algorithm

I only sketch correctness proofs here; more details are in the technical report [3].

Lemma 1 (Soundness and generality of abelian group unification).
If unification succeeds with Γ, [Ψ] � ∆ ` d id, then VTY(Γ, Ψ) = VTY(∆),
VGR(Γ, Ψ) ⊆ VGR(∆) and Γ, Ψ v̂ ∆ ` d ≡GR 1 is a most general solution.

Proof (Sketch). By structural induction on derivations. Each step preserves the
meaning of the problem, so the result is a solution (soundness). Moreover, each
step makes commitments only if they are essential to solving the problem, so
the result is most general. The interesting part is proving generality of the
Repossess rule, since this involves moving Ψ into a new locality, which could
restrict the solution. However, if Ψ contains a variable then it has the strictly
largest power, so the problem can be solved only by moving this variable. ut

Lemma 2 (Completeness of abelian group unification).
If d is a well-formed group expression in Γ , and there is some θ : Γ v Θ such
that Θ ` θd ≡GR 1, then the algorithm produces ∆ such that Γ, [E]� ∆ ` d id.

Proof (Sketch). A suitable metric shows that the algorithm terminates, so
reasoning by structural induction on the call graph is justified. Completeness
is by the fact that the rules cover all solvable cases and preserve solutions: if no
rule applies then the original problem can have had no solutions. This occurs if
a non-unit constant is equated to 1 or there is only one variable and its power
does not divide the power of one of the constants (e.g. (a2 · k) id). ut

4 Unification for types with units of measure

Having developed a unification algorithm for abelian groups, I now extend type
unification to support units of measure, calling group unification from Section 3
as a subroutine to solve constraints on units. The unification algorithm from my
previous work [4] is shown in Figure 5. Again the rules are syntax directed and
lead directly to an implementation. There are two kinds of rules:

– ‘Unify’ steps start the process: given an input context Γ and well-formed
types τ and υ, the judgment Γ � ∆ ` τ ≡ υ means that the unification
problem τ ≡TY υ is solved with output context ∆.

– ‘Solve’ steps handle flex-rigid unification problems:1 given a context Γ,Ξ,
a type variable α in Γ and a well-formed non-variable type τ in Γ,Ξ, the
judgment Γ |Ξ � ∆ ` α ≡ τ means that the problem α ≡TY τ is solved
with output context ∆. The context suffix Ξ collects type or group variable
declarations that τ depends on but that cannot be used to solve the problem.

1 Recall that a flex-rigid problem is to unify a variable and a non-variable expression; a
flex-flex problem has two variables and a rigid-rigid problem has two non-variables.

Γ � ∆ ` τ ≡ υ

Decompose

Γ � ∆0 ` τ0 ≡ υ0 ∆0 � ∆ ` τ1 ≡ υ1
Γ � ∆ ` τ0→τ1 ≡ υ0→υ1

Idle

Γ, αD � Γ, αD ` α ≡ α

Define

Γ, α?� Γ, α :=β ` α ≡ β α 6= β

Expand

Γ � ∆ ` τ ≡ β
Γ, α :=τ � ∆,α :=τ ` α ≡ β α 6= β

Ignore

Γ � ∆ ` α ≡ β
Γ, xD � ∆,xD ` α ≡ β x /∈ {α, β}

Skip

Γ � ∆ ` α ≡ β
Γ #� ∆# ` α ≡ β

Solve

Γ |E� ∆ ` α ≡ τ
Γ � ∆ ` α ≡ τ τ not variable

Γ |Ξ � ∆ ` α ≡ τ

DefineS

α /∈ FVTY(τ, Ξ)
Γ, α? |Ξ � Γ,Ξ, α :=τ ` α ≡ τ

ExpandS

Γ,Ξ � ∆ ` υ ≡ τ α /∈ FVTY(τ, Ξ)
Γ, α :=υ |Ξ � ∆,α :=υ ` α ≡ τ

IgnoreS

Γ |Ξ � ∆ ` α ≡ τ
Γ,xD |Ξ � ∆,xD ` α≡τ

α 6= x,

x /∈FVT (τ, Ξ)

DependS

Γ |xD,Ξ � ∆ ` α ≡ τ
Γ, xD |Ξ � ∆ ` α ≡ τ

α 6= x,

x ∈ FVT (τ, Ξ)

Repossess

Γ |Ξ � ∆ ` α ≡ τ
Γ # |Ξ � ∆# ` α ≡ τ

Symmetrical variants of Define, Expand
and Solve omitted.

Fig. 5. Original algorithmic rules for type unification

The algorithm starts by applying the Decompose rule to split up rigid-rigid
problems into subproblems and solving them sequentially. If a flex-flex problem
α ≡ β is reached, the context is searched for α and β, moving past other entries
with Ignore or Skip. When a variable is found, the problem is either ignored
by Idle if trivial, solved by Define, or simplified by Expand.

If a flex-rigid problem α ≡ τ is reached, the Solve rule applies. Now the context
is searched as in the flex-flex case, except that a list Ξ of hereditary dependencies
of τ (either type or group variables) is accumulated. These must be moved back
in the context until DefineS (solve α with τ) or ExpandS (substitute out α)
applies. Note the occurs check performed by both these rules: if α ∈ FVTY(τ, Ξ)
then α ≡ τ has no solutions. The suffix Ξ may be moved into a previous locality
by Repossess, making its entries less generalisable, so DependS only adds
entries to it if necessary; otherwise IgnoreS skips them.

For example, consider the context β?, α? #γ? and constraint α ≡ β→γ. This is a
flex-rigid problem so the Solve rule applies, followed by DependS as γ appears
in the type. The Repossess rule moves into the previous locality, making the
accumulated γ less generalisable. Finally, DefineS applies to solve the constraint
giving the final context β?, γ?, α :=β→γ#.

4.1 Units of measure as an abelian group

A unit (of measure) is a group expression with constants in a set of base units.
In practice, the programmer could choose the base units and write conversion
functions between them, often just as multiplicative constants, e.g. 2.2〈lbs/kg〉.
The language of types is extended with a single new type F〈d〉 of numbers
parameterised by units, adding a congruence rule to the declarative system and
a corresponding type unification rule that invokes abelian group unification:

d ≡GR e
F〈d〉 ≡TY F〈e〉 , Unit

Γ, [E]� ∆ ` d · e−1 id
Γ � ∆ ` F〈d〉 ≡ F〈e〉 .

Now suppose the algorithm is used to solve F〈b · c〉 → α ≡ F〈b〉 → F〈c〉 in the
context b?, α?, c?. First the constraint F〈b · c〉 ≡ F〈b〉 is reduced to b · c ≡GR b by
Unit, and this is solved by group unification (Section 3) to give b?, α?, c := 1.
Then the constraint α ≡ F〈c〉 is solved by moving c to give b?, c :=1, α :=F〈c〉.
Does Figure 5 extended with the Unit rule give a correct unification algorithm
for the extended type system? It should be sound and complete, as the new
algorithmic rule corresponds directly to the declarative rule, but generality fails.

4.2 Loss of generality and how to retain it

Suppose we seek α ≡ F〈b0·b1〉 in the context α?#b0?, b1?. Following the algorithm,
this flex-rigid problem is solved by moving b0 and b1 into the previous locality,
and instantiating α, resulting in the context b0?, b1?, α :=F〈b0 · b1〉#. However, a
more general solution exists, namely c?, α :=F〈c〉 # b0?, b1 :=c · b0−1, where c is a
fresh group variable and b0 is still local. Why did the algorithm fail to find this?

The trouble is that, when solving a flex-rigid constraint, the variable need not
be syntactically equal to the type: units need be equal only up to the theory
of abelian groups. The property that equivalent expressions have identical free
variables2 holds for the syntactic theory and some other useful theories [12] but
does not hold for groups. For example, the equation a · a−1 ≡GR 1 has a free on
the left but not the right. Thus variable occurrence does not imply dependency.
The occurs check performed by the unification algorithm is overly syntactic.

To solve this, a flex-rigid constraint can be decomposed into a constraint on
types, with fresh variables in place of units, and additional constraints to make
the fresh variables equal to the units. A rigid type decomposes into a ‘hull’,
or ‘type skeleton’3, that must match exactly, and a collection of constraints
in the richer equational theory. An anonymous reviewer observes that similar
techniques are used for type inference in annotated type systems [11, §5.3.2].

2 This property is sometimes called regularity in the literature, but I avoid this term
because it means too many different things in other contexts.

3 This term was suggested by an anonymous reviewer of a previous version.

In the example, the constraint α ≡ F〈b0 · b1〉 becomes α ≡TY F〈c〉 ∧ c ≡GR b0 · b1
in context α? #b0?, b1?, c?. Solving the first constraint gives c?, α :=F〈c〉 #b0?, b1?,
and solving the second yields the principal solution c?, α :=F〈c〉#b0?, b1 :=c·b0−1.

The rules from Figure 5 can be modified to maintain the invariant that the
only group variables a flex-rigid problem depends on (i.e. those in the rigid
type τ or suffix Ξ) are fresh unknowns. This ensures group variables are never
made less local by collecting them in Ξ as dependencies. Type unification does
not prejudice locality of group variables: that is up to the group unification
algorithm! The Solve and DependS rules are replaced by the following versions.
(I write ρ〈−〉 for the hull of the type ρ, parameterised by a vector of units:
ρ = F〈d〉→F〈e〉 has hull ρ〈−〉 = F〈−〉→F〈−〉 and ρ〈~a〉 = F〈a0〉→F〈a1〉.)

Solve′

Γ |~b� ∆0 ` α ≡ ρ〈~b〉 ∆0 � ∆ ` ~b ≡GR ~e
Γ � ∆ ` α ≡ ρ〈~e〉 ρ not variable,~b fresh

DependS′

Γ |β?, Ξ � ∆0 ` α ≡ τ
Γ, β? |Ξ � ∆ ` α ≡ τ α 6= β, β ∈ FVTY(τ, Ξ)

DependS′′

Γ |~b, β :=ρ〈~b〉, Ξ � ∆0 ` α ≡ τ ∆0 � ∆ ` ~b ≡GR ~e
Γ, β :=ρ〈~e〉 |Ξ � ∆ ` α ≡ τ

α 6= β,~b fresh,

β ∈ FVTY(τ, Ξ)

Vectors of equations are solved one at a time, threading the context:

∆0, [E]� ∆1 ` b1 · e1−1 id · · · ∆n−1, [E]� ∆n ` bn · en−1 id
∆0 � ∆n ` b1, . . . , bn ≡GR e1, . . . , en

4.3 Correctness of type unification

With the above refinement, type unification gives most general results. As before,
details of proofs are in the technical report [3].

Lemma 3 (Soundness and generality of type unification).

(a) If type unification succeeds with Γ � ∆ ` τ ≡ υ, then VTY(Γ) = VTY(∆),
VGR(Γ) ⊆ VGR(∆) and Γ v̂ ∆ ` τ ≡ υ is a most general solution.

(b) Correspondingly, if Γ |Ξ � ∆ ` α ≡ τ , then VTY(Γ,Ξ) = VTY(∆),
VGR(Γ) ⊆ VGR(∆) and Γ,Ξ v̂ ∆ ` α ≡ τ .

Proof (Sketch). By structural induction on derivations, as in Lemma 1, noting
that each step preserves solutions and follows a minimal commitment strategy.
The new rules in Section 4.2 ensure the type τ in the flex-rigid problem α ≡ τ
contains only group variables, not compound units. When a # separator is found,
any solution must move all the dependencies into the previous locality. ut

Lemma 4 (Completeness of type unification).

(a) If the types υ and τ are well-formed in Γ and there is some θ : Γ v Θ such
that Θ ` θυ ≡ θτ , then unification produces ∆ such that Γ � ∆ ` υ ≡ τ .

(b) Moreover, if θ : Γ,Ξ v Θ is such that Θ ` θα ≡ θτ and the following
conditions are satisfied:
α ∈ VTY(Γ), τ is not a variable,
Γ,Ξ ` τ is TY, Ξ contains only type or group variable declarations
β ∈ VT (Ξ)⇒ β ∈ FVT (τ, Ξ);

then there is some context ∆ such that Γ |Ξ � ∆ ` α ≡ τ .

Proof (Sketch). As before, first show termination, then reason by structural
induction. The rules preserve solutions, so if a recursive call fails then the
whole problem must have no solution. The only cases not covered are rigid-
rigid mismatches (such as unifying υ→ τ with F〈d〉) and occurs-check failures
(such as unifying α with α→α), neither of which have any solutions. ut

5 Type inference

I have given a unification algorithm for types, and this extends to a type inference
algorithm for the corresponding type system. The extension is detailed in my
previous paper [4] so for space reasons I will only sketch it here. Besides the new
types, new unification algorithm and the ability to quantify over group variables,
no changes to the core type inference algorithm are required.

A type scheme σ ::= ∀Ξ.τ is a type τ quantified over by a list Ξ of variable
declarations of sort TY or GR. For example, ∀α∀(β :=α).α→β corresponds to
the type α→β quantified over by α?, β :=α. Unknown variables are universally
quantified, while defined variables represent abbreviations stored in the type
scheme. (For a more conventional presentation, they could be substituted out.)

Just as a type scheme quantifies over a context extension, so a statement can be
conditional on an extension: if S is a statement, so is Ξ � S, with Γ ` (Ξ � S)
if Γ,Ξ ` S (omitting some details). I introduce a new statement form t : τ for
type assignment, where t is a term and τ is a well-formed type, then define a
new statement for scheme assignment by t :: ∀Ξ.τ 7→ Ξ � (t : τ).

Now term variables y ∈ VTM can be assigned properties of the form DTM ::= (::σ).
Extending the definitions in Section 2, the validity map says a scheme can be
assigned if it is well-formed, and the interpretation map says a declaration in
the context makes the corresponding scheme assignment statement hold:

okTM(::∀Ξ.τ) 7→ Ξ � (τ is TY), Jy ::σKTM 7→ y :: σ.

Thanks to the latter definition, the Lookup rule from Section 2 can be used
to assign types to variables. The other rules for type assignment statements are
given in Figure 6, adapted from the usual Hindley-Milner rules.

t : τ

y :: .υ � t : τ
λy.t : υ→τ

f : υ→τ a : υ
fa : τ

s :: σ y ::σ � w : τ
let y :=s in w : τ

t : τ τ ≡ υ
t : υ

Fig. 6. Declarative rules for type assignment

These rules can be converted into an algorithm that is structurally recursive on
terms, increasing information in the context along the way:

– For a term variable y, look up its type scheme in the context and specialise
the scheme with fresh variables to produce a type.

– For a lambda abstraction λy.t, create a fresh unknown type variable β, add
it with y :: β to the context, then infer the type of t.

– For an application fa, infer the types of f and a, then appeal to unification
to ensure f is a function whose domain corresponds to the type of a.

– For a let binding let y :=s in w a few steps are required:
1. place a marker # in the context, starting a new locality;
2. infer the type τ of s;
3. generalise τ over all type variables in the locality, producing a scheme σ;
4. extend the context with y :: σ and infer the type of w.

Generalisation is easy and there is no need to complicate the type inference
algorithm to deal with units of measure. The initial context can be extended
with constant terms that use the new types. Moreover, thanks to the refinement
of Section 4.2, the algorithm copes naturally with the problematic term from
Section 1, correctly inferring its most general type. Recall the example:

λx. let d :=divx in (d mass, d time), where

div :: ∀ab . F〈a · b〉→F〈a〉→F〈b〉, mass :: F〈kg〉, time :: F〈s〉.

At the crucial point when the type of d is being inferred, the situation is

γ?, x : γ # a?, b? ` divx : F〈a〉→F〈b〉 subject to γ ≡ F〈a · b〉,

where γ is an unknown fresh type variable standing in for the type of x. The
constraint decomposes into two simpler constraints γ ≡TY F〈c〉 ∧ c ≡GR a·b with
c a fresh group variable. These can be solved one at a time to give the context
c?, γ :=F〈c〉, x : γ # a?, b :=c · a−1. Generalising by ‘skimming off’ type variables
in the locality (and substituting out the defined b) gives the type scheme

c?, γ :=F〈c〉, x : γ ` d : ∀a.F〈a〉→F〈c · a−1〉,

which is principal. Type inference for the whole term succeeds, giving the type

F〈c〉→F〈c · kg−1〉 × F〈c · s−1〉.

6 Discussion

I have shown how to combine abelian group unification with syntactic unification
while carefully tracking dependencies in a structured context, so generalisation
is straightforward. The algorithms presented here solve unification problems by
making gradual steps towards a solution, and it is comparatively easy to check
that each step is sound and most general. A key point is that flex-rigid equations
α ≡ τ cannot always be solved by instantiating α to τ , given a nontrivial
equational theory. Instead, τ decomposes into a ‘hull’ (the outer structure that
α must match exactly) and a collection of constraints in the equational theory.

6.1 Related work

Many authors have proposed designs for systems of units of measure. I have
followed Kennedy’s design, using integer powers, so units form an abelian group.
Some authors use rational powers (giving a vector space), including Rittri [13],
who discusses the merits of both approaches. Chen et al. [2] give a useful overview
of work on units, and describe an alternative approach using static analysis.

Several impressive implementations of units of measure use advanced type
system features such as GHC Haskell extensions [1] and C++ templates [14].
However, the difficulty of expressing a nontrivial equational theory at the type
level means that they are complex, have limited inference capabilities and tend to
expose the internal implementation in unfriendly error messages. Making units
a type system extension, as in F#, results in a much more user-friendly system.

Rémy [12] extends the ML type system with other equational theories, using
ranked unification to achieve easy generalisation; he does not address theories
for which variable occurrence does not imply dependency, such as that of abelian
groups. Variable ranking (as formalised by Kuan and MacQueen [8]) is also used
in many ML type checkers for efficient generalisation; the algorithm described
in the present paper implicitly manages ranks, by permuting the context.

6.2 Future directions

This technique can be applied to other equational theories and more advanced
type systems. In particular, Miller’s ‘mixed prefix’ unification [10] works well in
this setting, as does the computational equality of dependent types [9].

Types indexed by integers form an abelian group under addition, so type
inference could be implemented as described here. However, for many purposes
inequalities are needed, so I am exploring how to solve them in this setting.
There are also many other algebraic structures to consider, notably rings and
semirings, though unification for their equational theories is often harder.

In this paper I have been following the trail that Kennedy blazed, both in the
representation of units of measure using a free abelian group with constants,

and the observation that unification has decidable most general unifiers in this
case. To extend the technique to less convenient type systems, I will need to
deal with problems that cannot necessarily be solved on the first attempt. The
contextual discipline described here provides a good foundation for developing
suitable algorithms: progress through the problem is represented using the
context structure, which can be extended to record postponed problems.

References

[1] Buckwalter, B.: Dimensional - statically checked physical dimensions for
Haskell, http://code.google.com/p/dimensional/

[2] Chen, F., Roşu, G., Venkatesan, R.P.: Rule-based analysis of dimensional
safety. In: Nieuwenhuis, R. (ed.) Rewriting Techniques and Applications
(RTA ’03). LNCS, vol. 2706, pp. 197–207. Springer (2003)

[3] Gundry, A.: Type inference for units of measure. Technical report (2011),
http://personal.cis.strath.ac.uk/~adam/units-of-measure/

[4] Gundry, A., McBride, C., McKinna, J.: Type inference in context. In:
Mathematically Structured Functional Programming (MSFP ’10). pp. 43–
54. ACM (2010)

[5] Kennedy, A.: Programming Languages and Dimensions. Ph.D. thesis,
University of Cambridge (1996)

[6] Kennedy, A.: Type inference and equational theories. Research Report
LIX/RR/96/09, École Polytechnique (1996)

[7] Kennedy, A.: Types for units-of-measure: Theory and practice. In:
Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) Central European Functional
Programming (CEFP ’09), LNCS, vol. 6299, pp. 268–305. Springer (2010)

[8] Kuan, G., MacQueen, D.: Efficient ML type inference using ranked type
variables. In: Russo, C.V., Dreyer, D. (eds.) ML ’07. pp. 3–14. ACM (2007)

[9] McBride, C.: Dependently Typed Functional Programs and their Proofs.
Ph.D. thesis, University of Edinburgh (1999)

[10] Miller, D.: Unification under a mixed prefix. J. Symbolic Computation
14(4), 321–358 (October 1992)

[11] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer (1999)

[12] Rémy, D.: Extension of ML type system with a sorted equational theory on
types. Research Report RR-1766, INRIA (1992)

[13] Rittri, M.: Dimension inference under polymorphic recursion. In: Functional
Programming and Computer Architecture (FPCA ’95). pp. 147–159. ACM

[14] Schabel, M.C., Watanabe, S.: Boost.Units 1.1.0, http://www.boost.org/
doc/libs/1_46_1/doc/html/boost_units.html

[15] Syme, D.: The F# 2.0 Language Specification. Microsoft (2010), http:

//research.microsoft.com/apps/pubs/default.aspx?id=79948

[16] Vytiniotis, D., Peyton Jones, S., Schrijvers, T.: Let should not be
generalized. In: Types in Language Design and Implementation (TLDI ’10).
pp. 39–50. ACM (2010)

